A Civics-oriented Approach to Understanding Intersectionally Marginalized Users' Experience with Hate Speech Online
- URL: http://arxiv.org/abs/2410.14950v1
- Date: Sat, 19 Oct 2024 02:40:08 GMT
- Title: A Civics-oriented Approach to Understanding Intersectionally Marginalized Users' Experience with Hate Speech Online
- Authors: Achhiya Sultana, Dipto Das, Saadia Binte Alam, Mohammad Shidujaman, Syed Ishtiaque Ahmed,
- Abstract summary: Content moderation in online platforms marginalizes users in the Global South at large.
This paper explores how such users' experiences with hate speech online in Bangladesh are shaped by their intersectional identities.
- Score: 15.257338064786198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While content moderation in online platforms marginalizes users in the Global South at large, users of certain identities are further marginalized. Such users often come from Indigenous ethnic minority groups or identify as women. Through a qualitative study based on 18 semi-structured interviews, this paper explores how such users' experiences with hate speech online in Bangladesh are shaped by their intersectional identities. Through a civics-oriented approach, we examined the spectrum of their legal status, membership, rights, and participation as users of online platforms. Drawing analogies with the concept of citizenship, we develop the concept of usership that offers a user-centered metaphor in studying moderation and platform governance.
Related papers
- The Role of Partisan Culture in Mental Health Language Online [32.60242402941811]
We present a large-scale observational study of 2,184,356 posts from 8,916 statistically matched Republican, Democrat, and unaffiliated online support community members.<n>We find that partisan culture does play into expressions of distress, underscoring the importance of considering partisan cultural differences in the design of online support community platforms.
arXiv Detail & Related papers (2025-06-25T12:44:10Z) - Characterizing the Fragmentation of the Social Media Ecosystem [39.58317527488534]
We use a dataset of 126M URLs posted by nearly 6M users on nine social media platforms.
We find a clear separation between mainstream and alt-tech platforms.
These findings outline the main dimensions defining the fragmentation and polarization of the social media ecosystem.
arXiv Detail & Related papers (2024-11-25T18:45:03Z) - Verified authors shape X/Twitter discursive communities [0.24999074238880484]
This study focuses on the role of verified users as the main content creators in online political debates.<n>The analysis centers on three major Italian political events in 2022 - the Presidential election, a governmental crisis, and the general elections - occurring before the introduction of paid account verification.
arXiv Detail & Related papers (2024-05-08T09:04:46Z) - The PRISM Alignment Project: What Participatory, Representative and Individualised Human Feedback Reveals About the Subjective and Multicultural Alignment of Large Language Models [67.38144169029617]
We introduce PRISM, a new dataset which maps the sociodemographics and stated preferences of 1,500 diverse participants from 75 countries.
PRISM contributes (i) wide geographic and demographic participation in human feedback data; (ii) two census-representative samples for understanding collective welfare (UK and US); and (iii) individualised feedback where every rating is linked to a detailed participant profile.
arXiv Detail & Related papers (2024-04-24T17:51:36Z) - Are Personalized Stochastic Parrots More Dangerous? Evaluating Persona
Biases in Dialogue Systems [103.416202777731]
We study "persona biases", which we define to be the sensitivity of dialogue models' harmful behaviors contingent upon the personas they adopt.
We categorize persona biases into biases in harmful expression and harmful agreement, and establish a comprehensive evaluation framework to measure persona biases in five aspects: Offensiveness, Toxic Continuation, Regard, Stereotype Agreement, and Toxic Agreement.
arXiv Detail & Related papers (2023-10-08T21:03:18Z) - Dynamics of Ideological Biases of Social Media Users [0.0]
We show that the evolution of online platform-wide opinion groups is driven by the desire to hold popular opinions.
We focus on two social media: Twitter and Parler, on which we tracked the political biases of their users.
arXiv Detail & Related papers (2023-09-27T19:39:07Z) - Disinformation Echo-Chambers on Facebook [0.27195102129095]
This chapter introduces a computational method designed to identify coordinated inauthentic behavior within Facebook groups.
The method focuses on analyzing posts, URLs, and images, revealing that certain Facebook groups engage in orchestrated campaigns.
These groups simultaneously share identical content, which may expose users to repeated encounters with false or misleading narratives.
arXiv Detail & Related papers (2023-09-14T14:33:16Z) - Analyzing Norm Violations in Live-Stream Chat [49.120561596550395]
We study the first NLP study dedicated to detecting norm violations in conversations on live-streaming platforms.
We define norm violation categories in live-stream chats and annotate 4,583 moderated comments from Twitch.
Our results show that appropriate contextual information can boost moderation performance by 35%.
arXiv Detail & Related papers (2023-05-18T05:58:27Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems.
This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content.
arXiv Detail & Related papers (2022-12-27T16:08:49Z) - Thread With Caution: Proactively Helping Users Assess and Deescalate
Tension in Their Online Discussions [13.455968033357065]
Incivility remains a major challenge for online discussion platforms.
Traditionally, platforms have relied on moderators to -- with or without algorithmic assistance -- take corrective actions such as removing comments or banning users.
We propose a complementary paradigm that directly empowers users by proactively enhancing their awareness about existing tension in the conversation they are engaging in.
arXiv Detail & Related papers (2022-12-02T19:00:03Z) - Estimating Topic Exposure for Under-Represented Users on Social Media [25.963970325207892]
This work focuses on highlighting the contributions of the engagers in the observed data.
The first step in behavioral analysis of these users is to find the topics they are exposed to but did not engage with.
We propose a novel framework that aids in identifying these users and estimates their topic exposure.
arXiv Detail & Related papers (2022-08-07T19:37:41Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - SoMin.ai: Personality-Driven Content Generation Platform [60.49416044866648]
We showcase the World's first personality-driven marketing content generation platform, called SoMin.ai.
The platform combines deep multi-view personality profiling framework and style generative adversarial networks.
It can be used for the enhancement of the social networking user experience as well as for content marketing routines.
arXiv Detail & Related papers (2020-11-30T08:33:39Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.