論文の概要: LangGFM: A Large Language Model Alone Can be a Powerful Graph Foundation Model
- arxiv url: http://arxiv.org/abs/2410.14961v1
- Date: Sat, 19 Oct 2024 03:27:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:31.116605
- Title: LangGFM: A Large Language Model Alone Can be a Powerful Graph Foundation Model
- Title(参考訳): LangGFM: 大規模言語モデル 単独で強力なグラフ基盤モデルになる
- Authors: Tianqianjin Lin, Pengwei Yan, Kaisong Song, Zhuoren Jiang, Yangyang Kang, Jun Lin, Weikang Yuan, Junjie Cao, Changlong Sun, Xiaozhong Liu,
- Abstract要約: グラフ基礎モデル(GFM)が最近注目を集めている。
現在の研究は、グラフ学習タスクの特定のサブセットに焦点を当てる傾向がある。
GFMBenchは26のデータセットからなる体系的で包括的なベンチマークである。
また,大規模言語モデルに完全に依存する新しいGFMであるLangGFMを紹介する。
- 参考スコア(独自算出の注目度): 27.047809869136458
- License:
- Abstract: Graph foundation models (GFMs) have recently gained significant attention. However, the unique data processing and evaluation setups employed by different studies hinder a deeper understanding of their progress. Additionally, current research tends to focus on specific subsets of graph learning tasks, such as structural tasks, node-level tasks, or classification tasks. As a result, they often incorporate specialized modules tailored to particular task types, losing their applicability to other graph learning tasks and contradicting the original intent of foundation models to be universal. Therefore, to enhance consistency, coverage, and diversity across domains, tasks, and research interests within the graph learning community in the evaluation of GFMs, we propose GFMBench-a systematic and comprehensive benchmark comprising 26 datasets. Moreover, we introduce LangGFM, a novel GFM that relies entirely on large language models. By revisiting and exploring the effective graph textualization principles, as well as repurposing successful techniques from graph augmentation and graph self-supervised learning within the language space, LangGFM achieves performance on par with or exceeding the state of the art across GFMBench, which can offer us new perspectives, experiences, and baselines to drive forward the evolution of GFMs.
- Abstract(参考訳): グラフ基礎モデル(GFM)が最近注目を集めている。
しかし、異なる研究で使われているユニークなデータ処理と評価のセットアップは、それらの進歩をより深く理解するのを妨げる。
さらに、現在の研究は、構造的タスク、ノードレベルのタスク、分類タスクなど、グラフ学習タスクの特定のサブセットに焦点を当てる傾向にある。
結果として、特定のタスクタイプに適した特殊なモジュールが組み込まれ、他のグラフ学習タスクへの適用性を失い、基礎モデルの本来の意図が普遍的であることに矛盾することが多い。
そこで, GFMの評価において, 領域, タスク, 研究分野間の一貫性, 包括性, 多様性を高めるため, 26データセットからなる総合的かつ総合的なベンチマークである GFMBench を提案する。
さらに,大規模言語モデルに完全に依存する新しいGFMであるLangGFMを紹介する。
効果的なグラフテクスチャライゼーションの原則を再考し、言語空間におけるグラフ強化とグラフ自己教師型学習から成功したテクニックを再調達することで、LangGFMは、GFMBench全体の最先端と同等以上のパフォーマンスを実現し、GFMの進化を促進するための新たな視点、経験、ベースラインを提供することができる。
関連論文リスト
- Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
我々は、ゼロショット学習を用いて、多様なグラフタスクを効果的に一般化する統合グラフ推論フレームワークSCOREを紹介する。
SCOREを38種類のグラフデータセットを用いて評価し、ノードレベル、リンクレベル、グラフレベルのタスクを複数のドメインでカバーする。
論文 参考訳(メタデータ) (2024-10-16T14:26:08Z) - Towards Vision-Language Geo-Foundation Model: A Survey [65.70547895998541]
Vision-Language Foundation Models (VLFMs) は、様々なマルチモーダルタスクにおいて顕著な進歩を遂げている。
本稿では, VLGFMを網羅的にレビューし, この分野の最近の展開を要約し, 分析する。
論文 参考訳(メタデータ) (2024-06-13T17:57:30Z) - A Survey on Self-Supervised Graph Foundation Models: Knowledge-Based Perspective [14.403179370556332]
グラフ自己教師型学習(SSL)は、グラフ基礎モデル(GFM)を事前学習するためのゴートメソッドとなった
本稿では,自己教師付きグラフモデルを用いた知識に基づく分類法を提案する。
論文 参考訳(メタデータ) (2024-03-24T13:10:09Z) - Position: Graph Foundation Models are Already Here [53.737868336014735]
グラフ基礎モデル(GFM)は、グラフ領域において重要な研究トピックとして浮上している。
グラフ語彙の提唱によるGFM開発のための新しい視点」を提案する。
この観点は、将来のGFM設計を、ニューラルネットワークのスケーリング法則に従って前進させる可能性がある。
論文 参考訳(メタデータ) (2024-02-03T17:24:36Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking [17.7473474499538]
ChatGPTのような大規模言語モデルは、人工知能にとって欠かせないものとなっている。
本研究では,グラフデータの解釈において,LLMの精度を評価するための調査を行う。
この知見は,言語モデルとグラフ理解のギャップを埋めるための貴重な洞察に寄与する。
論文 参考訳(メタデータ) (2023-05-24T11:53:19Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
自己教師付き全グラフ表現学習のためのローカル・インスタンスとグローバル・セマンティック・ラーニング(GraphLoG)という統合フレームワークを提案する。
GraphLoGは、局所的な類似点の保存に加えて、グローバルなセマンティッククラスタをキャプチャする階層的なプロトタイプも導入している。
モデル学習のための効率的なオンライン予測最大化(EM)アルゴリズムがさらに開発された。
論文 参考訳(メタデータ) (2021-06-08T05:25:38Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。