Multi-channel, tunable quantum photonic devices on fiber-integrated platforms
- URL: http://arxiv.org/abs/2410.14976v1
- Date: Sat, 19 Oct 2024 04:55:11 GMT
- Title: Multi-channel, tunable quantum photonic devices on fiber-integrated platforms
- Authors: Woong Bae Jeon, Jong Sung Moon, Kyu-Young Kim, Mohamed Benyoucef, Je-Hyung Kim,
- Abstract summary: We present a breakthrough in achieving a multiple, tunable array of quantum photonic devices.
Our fiber-integrated quantum platform realizes a scalable and reliable single-photon array within a compact fiber chip at telecom wavelengths.
- Score: 0.013980986259786221
- License:
- Abstract: Scalable, reliable quantum light sources are essential for increasing quantum channel capacity and advancing quantum protocols based on photonic qubits. Although recent developments in solid-state quantum emitters have enabled the generation of single photons with high performance, the scalable integration of quantum devices onto practical optical platforms remains a challenging task. Here, we present a breakthrough in achieving a multiple, tunable array of quantum photonic devices. The selective integration of multiple quantum dot devices onto a V-groove fiber platform features scalability, tunability, high yield, and high single-photon coupling efficiency. Therefore, our fiber-integrated quantum platform realizes a scalable and reliable single-photon array within a compact fiber chip at telecom wavelengths.
Related papers
- On chip high-dimensional entangled photon sources [0.0]
We review and introduce the nonlinear optical processes that facilitate on-chip high-dimensional entangled photon sources.
We discuss a range of current implementations of on-chip high-dimensional entangled photon sources and demonstrated applications.
arXiv Detail & Related papers (2024-09-05T03:43:10Z) - Super-resolved snapshot hyperspectral imaging of solid-state quantum
emitters for high-throughput integrated quantum technologies [2.369149909203103]
We introduce the concept of hyperspectral imaging in quantum optics, for the first time, to address such a long-standing issue.
With the extracted quantum dot positions and emission wavelengths, surface-emitting quantum light sources and in-plane photonic circuits can be deterministically fabricated.
Our work is expected to change the landscape of integrated quantum photonic technology.
arXiv Detail & Related papers (2023-11-05T11:51:22Z) - Compact Chirped Fiber Bragg Gratings for Single-Photon Generation from
Quantum Dots [0.0]
We present a compact, robust, and high-efficiency alternative for chirped pulse excitation of solid-state quantum emitters.
Our simple plug-and-play module consists of chirped fiber Bragg gratings fabricated via femtosecond inscription.
arXiv Detail & Related papers (2023-06-20T16:02:28Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - High-throughput quantum photonic devices emitting indistinguishable photons in the telecom C-band [28.279056210896716]
Single indistinguishable photons at telecom C-band wavelengths are essential for quantum networks and the future quantum internet.
We demonstrate the high- throughput fabrication of quantum-photonic integrated devices operating at C-band wavelengths based on epitaxial semiconductor quantum dots.
Further improvements in yield and coherence properties will pave the way for implementing single-photon non-linear devices and advanced quantum networks at telecom wavelengths.
arXiv Detail & Related papers (2023-04-05T15:39:22Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.