D-SarcNet: A Dual-stream Deep Learning Framework for Automatic Analysis of Sarcomere Structures in Fluorescently Labeled hiPSC-CMs
- URL: http://arxiv.org/abs/2410.14983v1
- Date: Sat, 19 Oct 2024 05:23:27 GMT
- Title: D-SarcNet: A Dual-stream Deep Learning Framework for Automatic Analysis of Sarcomere Structures in Fluorescently Labeled hiPSC-CMs
- Authors: Huyen Le, Khiet Dang, Nhung Nguyen, Mai Tran, Hieu Pham,
- Abstract summary: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful tool in advancing cardiovascular research and clinical applications.
The maturation of sarcomere organization in hiPSC-CMs is crucial, as it supports the contractile function and structural integrity of these cells.
We propose D-SarcNet, a dual-stream deep learning framework that takes fluorescent hiPSC-CM single-cell images as input and outputs the stage of the sarcomere structural organization on a scale from 1.0 to 5.0.
- Score: 9.758698147455764
- License:
- Abstract: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful tool in advancing cardiovascular research and clinical applications. The maturation of sarcomere organization in hiPSC-CMs is crucial, as it supports the contractile function and structural integrity of these cells. Traditional methods for assessing this maturation like manual annotation and feature extraction are labor-intensive, time-consuming, and unsuitable for high-throughput analysis. To address this, we propose D-SarcNet, a dual-stream deep learning framework that takes fluorescent hiPSC-CM single-cell images as input and outputs the stage of the sarcomere structural organization on a scale from 1.0 to 5.0. The framework also integrates Fast Fourier Transform (FFT), deep learning-generated local patterns, and gradient magnitude to capture detailed structural information at both global and local levels. Experiments on a publicly available dataset from the Allen Institute for Cell Science show that the proposed approach not only achieves a Spearman correlation of 0.868 marking a 3.7% improvement over the previous state-of-the-art but also significantly enhances other key performance metrics, including MSE, MAE, and R2 score. Beyond establishing a new state-of-the-art in sarcomere structure assessment from hiPSC-CM images, our ablation studies highlight the significance of integrating global and local information to enhance deep learning networks ability to discern and learn vital visual features of sarcomere structure.
Related papers
- Multimodal Outer Arithmetic Block Dual Fusion of Whole Slide Images and Omics Data for Precision Oncology [6.418265127069878]
We propose the use of omic embeddings during early and late fusion to capture complementary information from local (patch-level) to global (slide-level) interactions.
This dual fusion strategy enhances interpretability and classification performance, highlighting its potential for clinical diagnostics.
arXiv Detail & Related papers (2024-11-26T13:25:53Z) - The Rlign Algorithm for Enhanced Electrocardiogram Analysis through R-Peak Alignment for Explainable Classification and Clustering [34.88496713576635]
We aim to reintroduce shallow learning techniques, including support vector machines and principal components analysis, into ECG signal processing.
To this end, we developed and evaluated a transformation that effectively restructures ECG signals into a fully structured format.
Our approach demonstrates a significant advantage for shallow machine learning methods over CNNs, especially when dealing with limited training data.
arXiv Detail & Related papers (2024-07-22T11:34:47Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - Perspective+ Unet: Enhancing Segmentation with Bi-Path Fusion and Efficient Non-Local Attention for Superior Receptive Fields [19.71033340093199]
We propose a novel architecture, Perspective+ Unet, to overcome limitations in medical image segmentation.
The framework incorporates an efficient non-local transformer block, named ENLTB, which utilizes kernel function approximation for effective long-range dependency capture.
Experimental results on the ACDC and datasets demonstrate the effectiveness of our proposed Perspective+ Unet.
arXiv Detail & Related papers (2024-06-20T07:17:39Z) - SarcNet: A Novel AI-based Framework to Automatically Analyze and Score Sarcomere Organizations in Fluorescently Tagged hiPSC-CMs [9.20965688800047]
Quantifying sarcomere structure organization in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is crucial for understanding cardiac disease pathology, improving drug screening, and advancing regenerative medicine.
We present a novel deep learning-based framework that leverages cell images and integrates cell features to automatically evaluate the sarcomere structure of hiPSC-CMs from the onset of differentiation.
arXiv Detail & Related papers (2024-05-28T07:48:10Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
This paper focuses on learning representation on the whole graph level in an unsupervised manner.
We propose a novel framework called Structure Knowledge Refinement (SKR) which uses data structure to determine the probability of whether a pair is positive or negative.
arXiv Detail & Related papers (2024-01-05T09:05:33Z) - Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview
Learning for Medical Image Segmentation [3.1002416427168304]
This thesis focuses on retinal blood vessel segmentation tasks.
It provides an extensive literature review of deep learning-based medical image segmentation approaches.
It proposes a novel efficient, simple multiview learning framework.
arXiv Detail & Related papers (2023-11-02T06:31:08Z) - Structural and Statistical Texture Knowledge Distillation for Semantic
Segmentation [72.67912031720358]
We propose a novel Structural and Statistical Texture Knowledge Distillation (SSTKD) framework for semantic segmentation.
For structural texture knowledge, we introduce a Contourlet Decomposition Module (CDM) that decomposes low-level features.
For statistical texture knowledge, we propose a Denoised Texture Intensity Equalization Module (DTIEM) to adaptively extract and enhance statistical texture knowledge.
arXiv Detail & Related papers (2023-05-06T06:01:11Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Unveiling the Potential of Structure-Preserving for Weakly Supervised
Object Localization [71.79436685992128]
We propose a two-stage approach, termed structure-preserving activation (SPA), towards fully leveraging the structure information incorporated in convolutional features for WSOL.
In the first stage, a restricted activation module (RAM) is designed to alleviate the structure-missing issue caused by the classification network.
In the second stage, we propose a post-process approach, termed self-correlation map generating (SCG) module to obtain structure-preserving localization maps.
arXiv Detail & Related papers (2021-03-08T03:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.