Deep Representation Learning for Unsupervised Clustering of Myocardial Fiber Trajectories in Cardiac Diffusion Tensor Imaging
- URL: http://arxiv.org/abs/2504.01953v1
- Date: Wed, 02 Apr 2025 17:56:57 GMT
- Title: Deep Representation Learning for Unsupervised Clustering of Myocardial Fiber Trajectories in Cardiac Diffusion Tensor Imaging
- Authors: Mohini Anand, Xavier Tricoche,
- Abstract summary: We present a novel deep learning framework for unsupervised clustering of myocardial fibers.<n>Our framework offers a new, flexible, and quantitative way to analyze myocardial structure, achieving a level of delineation that has not been previously achieved.
- Score: 0.6554326244334868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the complex myocardial architecture is critical for diagnosing and treating heart disease. However, existing methods often struggle to accurately capture this intricate structure from Diffusion Tensor Imaging (DTI) data, particularly due to the lack of ground truth labels and the ambiguous, intertwined nature of fiber trajectories. We present a novel deep learning framework for unsupervised clustering of myocardial fibers, providing a data-driven approach to identifying distinct fiber bundles. We uniquely combine a Bidirectional Long Short-Term Memory network to capture local sequential information along fibers, with a Transformer autoencoder to learn global shape features, with pointwise incorporation of essential anatomical context. Clustering these representations using a density-based algorithm identifies 33 to 62 robust clusters, successfully capturing the subtle distinctions in fiber trajectories with varying levels of granularity. Our framework offers a new, flexible, and quantitative way to analyze myocardial structure, achieving a level of delineation that, to our knowledge, has not been previously achieved, with potential applications in improving surgical planning, characterizing disease-related remodeling, and ultimately, advancing personalized cardiac care.
Related papers
- Enhancing Diagnostic Precision in Gastric Bleeding through Automated Lesion Segmentation: A Deep DuS-KFCM Approach [20.416923956241497]
We introduce a novel deep learning model, the Dual Spatial Kernelized Constrained Fuzzy C-Means (Deep DuS-KFCM) clustering algorithm.
This system synergizes Neural Networks with Fuzzy Logic to offer a highly precise and efficient identification of bleeding regions.
Our model demonstrated unprecedented accuracy rates of 87.95%, coupled with a specificity of 96.33%, outperforming contemporary segmentation methods.
arXiv Detail & Related papers (2024-11-21T18:21:42Z) - Preserving Cardiac Integrity: A Topology-Infused Approach to Whole Heart Segmentation [6.495726693226574]
Whole heart segmentation (WHS) supports cardiovascular disease diagnosis, disease monitoring, treatment planning, and prognosis.
This paper introduces a new topology-preserving module that is integrated into deep neural networks.
The implementation achieves anatomically plausible segmentation by using learned topology-preserving fields, which are based entirely on 3D convolution and are therefore very effective for 3D voxel data.
arXiv Detail & Related papers (2024-10-14T14:32:05Z) - RotCAtt-TransUNet++: Novel Deep Neural Network for Sophisticated Cardiac Segmentation [0.0]
We present RotCAtt-TransUNet++, a novel architecture tailored for robust segmentation of complex cardiac structures.
Our approach emphasizes modeling global contexts by aggregating multiscale features with nested skip connections in the encoder.
Experimental results demonstrate that our proposed model outperforms existing SOTA approaches across four cardiac datasets and one abdominal dataset.
arXiv Detail & Related papers (2024-09-09T02:18:50Z) - Deep Spectral Methods for Unsupervised Ultrasound Image Interpretation [53.37499744840018]
This paper proposes a novel unsupervised deep learning strategy tailored to ultrasound to obtain easily interpretable tissue separations.
We integrate key concepts from unsupervised deep spectral methods, which combine spectral graph theory with deep learning methods.
We utilize self-supervised transformer features for spectral clustering to generate meaningful segments based on ultrasound-specific metrics and shape and positional priors, ensuring semantic consistency across the dataset.
arXiv Detail & Related papers (2024-08-04T14:30:14Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Contextual Information Enhanced Convolutional Neural Networks for
Retinal Vessel Segmentation in Color Fundus Images [0.0]
An automatic retinal vessel segmentation system can effectively facilitate clinical diagnosis and ophthalmological research.
A deep learning based method has been proposed and several customized modules have been integrated into the well-known encoder-decoder architecture U-net.
As a result, the proposed method outperforms the work of predecessors and achieves state-of-the-art performance in Sensitivity/Recall, F1-score and MCC.
arXiv Detail & Related papers (2021-03-25T06:10:47Z) - Multi-class probabilistic atlas-based whole heart segmentation method in
cardiac CT and MRI [4.144197343838299]
This article proposes a framework for multi-class whole heart segmentation employing non-rigid registration-based probabilistic atlas.
We also propose a non-rigid registration pipeline utilizing a multi-resolution strategy for obtaining the highest attainable mutual information.
The proposed approach exhibits an encouraging achievement, yielding a mean volume overlapping error of 14.5 % for CT scans.
arXiv Detail & Related papers (2021-02-03T01:02:09Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - CS2-Net: Deep Learning Segmentation of Curvilinear Structures in Medical
Imaging [90.78899127463445]
We propose a generic and unified convolution neural network for the segmentation of curvilinear structures.
We introduce a new curvilinear structure segmentation network (CS2-Net), which includes a self-attention mechanism in the encoder and decoder.
arXiv Detail & Related papers (2020-10-15T03:06:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.