How Many Van Goghs Does It Take to Van Gogh? Finding the Imitation Threshold
- URL: http://arxiv.org/abs/2410.15002v1
- Date: Sat, 19 Oct 2024 06:28:14 GMT
- Title: How Many Van Goghs Does It Take to Van Gogh? Finding the Imitation Threshold
- Authors: Sahil Verma, Royi Rassin, Arnav Das, Gantavya Bhatt, Preethi Seshadri, Chirag Shah, Jeff Bilmes, Hannaneh Hajishirzi, Yanai Elazar,
- Abstract summary: We study the relationship between a concept's frequency in the training dataset and the ability of a model to imitate it.
We propose an efficient approach that estimates the imitation threshold without incurring the colossal cost of training multiple models from scratch.
- Score: 50.33428591760124
- License:
- Abstract: Text-to-image models are trained using large datasets collected by scraping image-text pairs from the internet. These datasets often include private, copyrighted, and licensed material. Training models on such datasets enables them to generate images with such content, which might violate copyright laws and individual privacy. This phenomenon is termed imitation -- generation of images with content that has recognizable similarity to its training images. In this work we study the relationship between a concept's frequency in the training dataset and the ability of a model to imitate it. We seek to determine the point at which a model was trained on enough instances to imitate a concept -- the imitation threshold. We posit this question as a new problem: Finding the Imitation Threshold (FIT) and propose an efficient approach that estimates the imitation threshold without incurring the colossal cost of training multiple models from scratch. We experiment with two domains -- human faces and art styles -- for which we create four datasets, and evaluate three text-to-image models which were trained on two pretraining datasets. Our results reveal that the imitation threshold of these models is in the range of 200-600 images, depending on the domain and the model. The imitation threshold can provide an empirical basis for copyright violation claims and acts as a guiding principle for text-to-image model developers that aim to comply with copyright and privacy laws. We release the code and data at \url{https://github.com/vsahil/MIMETIC-2.git} and the project's website is hosted at \url{https://how-many-van-goghs-does-it-take.github.io}.
Related papers
- Not Every Image is Worth a Thousand Words: Quantifying Originality in Stable Diffusion [21.252145402613472]
This work addresses the challenge of quantifying originality in text-to-image (T2I) generative diffusion models.
We propose a method that leverages textual inversion to measure the originality of an image based on the number of tokens required for its reconstruction by the model.
arXiv Detail & Related papers (2024-08-15T14:42:02Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z) - DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models [79.71665540122498]
We propose a method for detecting unauthorized data usage by planting the injected content into the protected dataset.
Specifically, we modify the protected images by adding unique contents on these images using stealthy image warping functions.
By analyzing whether the model has memorized the injected content, we can detect models that had illegally utilized the unauthorized data.
arXiv Detail & Related papers (2023-07-06T16:27:39Z) - Evaluating Data Attribution for Text-to-Image Models [62.844382063780365]
We evaluate attribution through "customization" methods, which tune an existing large-scale model toward a given exemplar object or style.
Our key insight is that this allows us to efficiently create synthetic images that are computationally influenced by the exemplar by construction.
By taking into account the inherent uncertainty of the problem, we can assign soft attribution scores over a set of training images.
arXiv Detail & Related papers (2023-06-15T17:59:51Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability.
These models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos.
We propose an efficient method of ablating concepts in the pretrained model, preventing the generation of a target concept.
arXiv Detail & Related papers (2023-03-23T17:59:42Z) - Fake it till you make it: Learning transferable representations from
synthetic ImageNet clones [30.264601433216246]
We show that ImageNet clones can close a large part of the gap between models produced by synthetic images and models trained with real images.
We show that models trained on synthetic images exhibit strong generalization properties and perform on par with models trained on real data for transfer.
arXiv Detail & Related papers (2022-12-16T11:44:01Z) - InvGAN: Invertible GANs [88.58338626299837]
InvGAN, short for Invertible GAN, successfully embeds real images to the latent space of a high quality generative model.
This allows us to perform image inpainting, merging, and online data augmentation.
arXiv Detail & Related papers (2021-12-08T21:39:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.