論文の概要: Retrieval Augmented Diffusion Model for Structure-informed Antibody Design and Optimization
- arxiv url: http://arxiv.org/abs/2410.15040v1
- Date: Sat, 19 Oct 2024 08:53:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:12:57.749201
- Title: Retrieval Augmented Diffusion Model for Structure-informed Antibody Design and Optimization
- Title(参考訳): 構造インフォームド抗体設計と最適化のための検索拡張拡散モデル
- Authors: Zichen Wang, Yaokun Ji, Jianing Tian, Shuangjia Zheng,
- Abstract要約: 抗体は生物の免疫応答に必須のタンパク質である。
生成モデルにおける最近の進歩は、合理的抗体設計を著しく強化した。
本稿では,効率的な抗体設計のための検索拡張拡散フレームワーク RADAb を提案する。
- 参考スコア(独自算出の注目度): 8.546688995090491
- License:
- Abstract: Antibodies are essential proteins responsible for immune responses in organisms, capable of specifically recognizing antigen molecules of pathogens. Recent advances in generative models have significantly enhanced rational antibody design. However, existing methods mainly create antibodies from scratch without template constraints, leading to model optimization challenges and unnatural sequences. To address these issues, we propose a retrieval-augmented diffusion framework, termed RADAb, for efficient antibody design. Our method leverages a set of structural homologous motifs that align with query structural constraints to guide the generative model in inversely optimizing antibodies according to desired design criteria. Specifically, we introduce a structure-informed retrieval mechanism that integrates these exemplar motifs with the input backbone through a novel dual-branch denoising module, utilizing both structural and evolutionary information. Additionally, we develop a conditional diffusion model that iteratively refines the optimization process by incorporating both global context and local evolutionary conditions. Our approach is agnostic to the choice of generative models. Empirical experiments demonstrate that our method achieves state-of-the-art performance in multiple antibody inverse folding and optimization tasks, offering a new perspective on biomolecular generative models.
- Abstract(参考訳): 抗体は、病原体の抗原分子を特異的に認識できる有機体の免疫応答に不可欠なタンパク質である。
生成モデルにおける最近の進歩は、合理的抗体設計を著しく強化した。
しかし、既存の手法は主にテンプレート制約なしにスクラッチから抗体を生成し、モデル最適化の課題と不自然なシーケンスをもたらす。
これらの課題に対処するために,効率的な抗体設計のための検索拡張拡散フレームワーク RADAb を提案する。
提案手法は,要求された設計基準に従って抗体を逆最適化する際の生成モデルを導くために,クエリ構造制約と整合する構造的ホモロジーモチーフのセットを利用する。
具体的には、構造情報と進化情報の両方を利用して、これらの代表的モチーフを入力バックボーンと統合する構造インフォームド検索機構を導入する。
さらに,グローバルな文脈と局所的な進化条件を組み込むことで,最適化プロセスを反復的に洗練する条件拡散モデルを開発した。
私たちのアプローチは生成モデルの選択に無関係です。
実験により, 生体分子生成モデルに新たな視点を呈し, 複数の抗体逆折り畳みおよび最適化タスクにおける最先端性能の実現を実証した。
関連論文リスト
- Improving Antibody Design with Force-Guided Sampling in Diffusion Models [39.94753945046461]
本研究では,力場エネルギーに基づくフィードバックを統合することで拡散モデルのサンプリングプロセスを強化する新しい手法を提案する。
我々のモデルであるDiffForceは、拡散サンプリングプロセスの導出に力を使い、2つの分布を効果的にブレンドする。
論文 参考訳(メタデータ) (2024-06-09T15:50:35Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
構造に基づく薬物設計のための拡散型フラグメントワイド自己回帰生成モデル(SBDD)を提案する。
我々はまず,分子の局所構造の整合性を保持する共形モチーフという新しい分子組立戦略を設計する。
次に、タンパク質-リガンド複合体とSE(3)等価な畳み込みネットワークとの相互作用をエンコードし、拡散モデルを用いて分子モチーフ・バイ・モチーフを生成する。
論文 参考訳(メタデータ) (2024-04-02T14:44:02Z) - Antigen-Specific Antibody Design via Direct Energy-based Preference Optimization [51.28231365213679]
我々は,抗原特異的抗体配列構造共設計を,特定の嗜好に対する最適化問題として取り組んだ。
そこで本研究では,有理構造と抗原への結合親和性の両方を有する抗体の生成を誘導する,直接エネルギーに基づく選好最適化を提案する。
論文 参考訳(メタデータ) (2024-03-25T09:41:49Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOptは、制御可能・拡散モデルに基づく構造に基づく分子最適化手法である。
DecompOptは強いde novoベースラインよりも優れた特性を持つ分子を効率よく生成できることを示す。
論文 参考訳(メタデータ) (2024-03-07T02:53:40Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
タンパク質設計における一般的なアプローチは、生成モデルと条件付きサンプリングのための識別モデルを組み合わせることである。
離散拡散モデルのためのガイダンス手法であるdiffusioN Optimized Smpling (NOS)を提案する。
NOSは、構造に基づく手法の重要な制限を回避し、シーケンス空間で直接設計を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T16:31:24Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
抗体の特異性は、その相補性決定領域(CDR)によって決定される
従来の研究では、複雑な技術を使ってCDRを生成するが、不適切な幾何学的モデリングに悩まされている。
本稿では,CDRの1次元配列と3次元構造を1ショットで共設計できるテクスタイスシンプルで効果的なモデルを提案する。
論文 参考訳(メタデータ) (2023-04-21T13:24:26Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
我々は、抗体配列から抗体構造を予測するために、xTrimoABFoldという新しいモデルを開発した。
CDRにおけるドメイン特異的焦点損失のアンサンブル損失とフレーム整合点損失を最小化することにより,PDBの抗体構造をエンドツーエンドにトレーニングした。
論文 参考訳(メタデータ) (2022-11-30T09:26:08Z) - Incorporating Pre-training Paradigm for Antibody Sequence-Structure
Co-design [134.65287929316673]
深層学習に基づく計算抗体の設計は、人間の経験を補完する可能性のあるデータから自動的に抗体パターンをマイニングするので、注目を集めている。
計算手法は高品質な抗体構造データに大きく依存しており、非常に限定的である。
幸いなことに、CDRをモデル化し、構造データへの依存を軽減するために有効な抗体の配列データが多数存在する。
論文 参考訳(メタデータ) (2022-10-26T15:31:36Z) - Iterative Refinement Graph Neural Network for Antibody
Sequence-Structure Co-design [35.215029426177004]
そこで本研究では,結合特異性や中和機能を増強した抗体を自動設計する生成モデルを提案する。
本手法は,SARS-CoV-2ウイルスを中和可能な抗体の設計において,テストセット上で優れたログライクレーションを実現し,過去のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-10-09T18:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。