Standardizing Generative Face Video Compression using Supplemental Enhancement Information
- URL: http://arxiv.org/abs/2410.15105v1
- Date: Sat, 19 Oct 2024 13:37:24 GMT
- Title: Standardizing Generative Face Video Compression using Supplemental Enhancement Information
- Authors: Bolin Chen, Yan Ye, Jie Chen, Ru-Ling Liao, Shanzhi Yin, Shiqi Wang, Kaifa Yang, Yue Li, Yiling Xu, Ye-Kui Wang, Shiv Gehlot, Guan-Ming Su, Peng Yin, Sean McCarthy, Gary J. Sullivan,
- Abstract summary: This paper proposes a Generative Face Video Compression (GFVC) approach using Supplemental Enhancement Information (SEI)
At the time of writing, the proposed GFVC approach is an official "technology under consideration" (TuC) for standardization by the Joint Video Experts Team (JVET)
To the best of the authors' knowledge, the JVET work on the proposed SEI-based GFVC approach is the first standardization activity for generative video compression.
- Score: 22.00903915523654
- License:
- Abstract: This paper proposes a Generative Face Video Compression (GFVC) approach using Supplemental Enhancement Information (SEI), where a series of compact spatial and temporal representations of a face video signal (i.e., 2D/3D key-points, facial semantics and compact features) can be coded using SEI message and inserted into the coded video bitstream. At the time of writing, the proposed GFVC approach is an official "technology under consideration" (TuC) for standardization by the Joint Video Experts Team (JVET) of ISO/IEC JVT 1/SC 29 and ITU-T SG16. To the best of the authors' knowledge, the JVET work on the proposed SEI-based GFVC approach is the first standardization activity for generative video compression. The proposed SEI approach has not only advanced the reconstruction quality of early-day Model-Based Coding (MBC) via the state-of-the-art generative technique, but also established a new SEI definition for future GFVC applications and deployment. Experimental results illustrate that the proposed SEI-based GFVC approach can achieve remarkable rate-distortion performance compared with the latest Versatile Video Coding (VVC) standard, whilst also potentially enabling a wide variety of functionalities including user-specified animation/filtering and metaverse-related applications.
Related papers
- Generative Human Video Compression with Multi-granularity Temporal Trajectory Factorization [13.341123726068652]
We propose a novel Multi-granularity Temporal Trajectory Factorization framework for generative human video compression.
Experimental results show that proposed method outperforms latest generative models and the state-of-the-art video coding standard Versatile Video Coding.
arXiv Detail & Related papers (2024-10-14T05:34:32Z) - Beyond GFVC: A Progressive Face Video Compression Framework with Adaptive Visual Tokens [28.03183316628635]
This paper proposes a novel Progressive Face Video Compression framework, namely PFVC, that utilizes adaptive visual tokens to realize exceptional trade-offs between reconstruction and bandwidth intelligence.
Experimental results demonstrate that the proposed PFVC framework can achieve better coding flexibility and superior rate-distortion performance in comparison with the latest Versatile Video Coding (VVC) and the state-of-the-art Generative Face Video Compression (GFVC) algorithms.
arXiv Detail & Related papers (2024-10-11T03:24:21Z) - When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding [112.44822009714461]
Cross-Modality Video Coding (CMVC) is a pioneering approach to explore multimodality representation and video generative models in video coding.
During decoding, previously encoded components and video generation models are leveraged to create multiple encoding-decoding modes.
Experiments indicate that TT2V achieves effective semantic reconstruction, while IT2V exhibits competitive perceptual consistency.
arXiv Detail & Related papers (2024-08-15T11:36:18Z) - Generative Face Video Coding Techniques and Standardization Efforts: A
Review [17.856692220227583]
Generative Face Video Coding (GFVC) techniques can achieve high-quality face video communication in ultra-low bandwidth scenarios.
This paper conducts a comprehensive survey on the recent advances of the GFVC techniques and standardization efforts.
arXiv Detail & Related papers (2023-11-05T13:32:51Z) - Perceptual Quality Assessment of Face Video Compression: A Benchmark and
An Effective Method [69.868145936998]
Generative coding approaches have been identified as promising alternatives with reasonable perceptual rate-distortion trade-offs.
The great diversity of distortion types in spatial and temporal domains, ranging from the traditional hybrid coding frameworks to generative models, present grand challenges in compressed face video quality assessment (VQA)
We introduce the large-scale Compressed Face Video Quality Assessment (CFVQA) database, which is the first attempt to systematically understand the perceptual quality and diversified compression distortions in face videos.
arXiv Detail & Related papers (2023-04-14T11:26:09Z) - CANF-VC: Conditional Augmented Normalizing Flows for Video Compression [81.41594331948843]
CANF-VC is an end-to-end learning-based video compression system.
It is based on conditional augmented normalizing flows (ANF)
arXiv Detail & Related papers (2022-07-12T04:53:24Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Video Coding for Machines: A Paradigm of Collaborative Compression and
Intelligent Analytics [127.65410486227007]
Video coding, which targets to compress and reconstruct the whole frame, and feature compression, which only preserves and transmits the most critical information, stand at two ends of the scale.
Recent endeavors in imminent trends of video compression, e.g. deep learning based coding tools and end-to-end image/video coding, and MPEG-7 compact feature descriptor standards, promote the sustainable and fast development in their own directions.
In this paper, thanks to booming AI technology, e.g. prediction and generation models, we carry out exploration in the new area, Video Coding for Machines (VCM), arising from the emerging MPEG
arXiv Detail & Related papers (2020-01-10T17:24:13Z) - An Emerging Coding Paradigm VCM: A Scalable Coding Approach Beyond
Feature and Signal [99.49099501559652]
Video Coding for Machine (VCM) aims to bridge the gap between visual feature compression and classical video coding.
We employ a conditional deep generation network to reconstruct video frames with the guidance of learned motion pattern.
By learning to extract sparse motion pattern via a predictive model, the network elegantly leverages the feature representation to generate the appearance of to-be-coded frames.
arXiv Detail & Related papers (2020-01-09T14:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.