Pleno-Generation: A Scalable Generative Face Video Compression Framework with Bandwidth Intelligence
- URL: http://arxiv.org/abs/2502.17085v1
- Date: Mon, 24 Feb 2025 12:03:30 GMT
- Title: Pleno-Generation: A Scalable Generative Face Video Compression Framework with Bandwidth Intelligence
- Authors: Bolin Chen, Hanwei Zhu, Shanzhi Yin, Lingyu Zhu, Jie Chen, Ru-Ling Liao, Shiqi Wang, Yan Ye,
- Abstract summary: Pleno-Generation (PGen) framework prioritizes high-fidelity reconstruction over pursuing compact bitstream.<n>We show that the proposed framework can allow a greater space of flexibility for coding applications.<n>In comparison with the latest Versatile Video Coding (VVC), the proposed scheme achieves competitive Bjontegaard-delta-rate savings.
- Score: 19.137109044483545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative model based compact video compression is typically operated within a relative narrow range of bitrates, and often with an emphasis on ultra-low rate applications. There has been an increasing consensus in the video communication industry that full bitrate coverage should be enabled by generative coding. However, this is an extremely difficult task, largely because generation and compression, although related, have distinct goals and trade-offs. The proposed Pleno-Generation (PGen) framework distinguishes itself through its exceptional capabilities in ensuring the robustness of video coding by utilizing a wider range of bandwidth for generation via bandwidth intelligence. In particular, we initiate our research of PGen with face video coding, and PGen offers a paradigm shift that prioritizes high-fidelity reconstruction over pursuing compact bitstream. The novel PGen framework leverages scalable representation and layered reconstruction for Generative Face Video Compression (GFVC), in an attempt to imbue the bitstream with intelligence in different granularity. Experimental results illustrate that the proposed PGen framework can facilitate existing GFVC algorithms to better deliver high-fidelity and faithful face videos. In addition, the proposed framework can allow a greater space of flexibility for coding applications and show superior RD performance with a much wider bitrate range in terms of various quality evaluations. Moreover, in comparison with the latest Versatile Video Coding (VVC) codec, the proposed scheme achieves competitive Bj{\o}ntegaard-delta-rate savings for perceptual-level evaluations.
Related papers
- Plug-and-Play Versatile Compressed Video Enhancement [57.62582951699999]
Video compression effectively reduces the size of files, making it possible for real-time cloud computing.
However, it comes at the cost of visual quality, challenges the robustness of downstream vision models.
We present a versatile-aware enhancement framework that adaptively enhance videos under different compression settings.
arXiv Detail & Related papers (2025-04-21T18:39:31Z) - REGEN: Learning Compact Video Embedding with (Re-)Generative Decoder [52.698595889988766]
We present a novel perspective on learning video embedders for generative modeling.
Rather than requiring an exact reproduction of an input video, an effective embedder should focus on visually plausible reconstructions.
We propose replacing the conventional encoder-decoder video embedder with an encoder-generator framework.
arXiv Detail & Related papers (2025-03-11T17:51:07Z) - Standardizing Generative Face Video Compression using Supplemental Enhancement Information [22.00903915523654]
This paper proposes a Generative Face Video Compression (GFVC) approach using Supplemental Enhancement Information (SEI)<n>At the time of writing, the proposed GFVC approach using SEI messages has been adopted into the official working draft of Versatile Supplemental Enhancement Information (VSEI) standard.<n>To the best of the authors' knowledge, the JVET work on the proposed SEI-based GFVC approach is the first standardization activity for generative video compression.
arXiv Detail & Related papers (2024-10-19T13:37:24Z) - Beyond GFVC: A Progressive Face Video Compression Framework with Adaptive Visual Tokens [28.03183316628635]
This paper proposes a novel Progressive Face Video Compression framework, namely PFVC, that utilizes adaptive visual tokens to realize exceptional trade-offs between reconstruction and bandwidth intelligence.
Experimental results demonstrate that the proposed PFVC framework can achieve better coding flexibility and superior rate-distortion performance in comparison with the latest Versatile Video Coding (VVC) and the state-of-the-art Generative Face Video Compression (GFVC) algorithms.
arXiv Detail & Related papers (2024-10-11T03:24:21Z) - High-Efficiency Neural Video Compression via Hierarchical Predictive Learning [27.41398149573729]
Enhanced Deep Hierarchical Video Compression-DHVC 2.0- introduces superior compression performance and impressive complexity efficiency.
Uses hierarchical predictive coding to transform each video frame into multiscale representations.
Supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss.
arXiv Detail & Related papers (2024-10-03T15:40:58Z) - Once-for-All: Controllable Generative Image Compression with Dynamic Granularity Adaption [52.82508784748278]
This paper proposes a Control Generative Image Compression framework, termed Control-GIC.<n>Control-GIC is capable of fine-grained adaption across a broad spectrum while ensuring high-fidelity and generality compression.<n>We develop a conditional decoder capable of retrieving historic multi-granularity representations according to encoded codes, and then reconstruct hierarchical features in the formalization of conditional probability.
arXiv Detail & Related papers (2024-06-02T14:22:09Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
This paper focuses on the task of quality enhancement for compressed videos.
Most of the existing methods lack a structured design to optimally leverage the priors within compression codecs.
A new paradigm is urgently needed for a more conscious'' process of quality enhancement.
arXiv Detail & Related papers (2024-05-10T09:18:17Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing.
This paper introduces a universal boosting framework for current implicit video representation approaches.
arXiv Detail & Related papers (2024-02-28T08:32:19Z) - CANF-VC: Conditional Augmented Normalizing Flows for Video Compression [81.41594331948843]
CANF-VC is an end-to-end learning-based video compression system.
It is based on conditional augmented normalizing flows (ANF)
arXiv Detail & Related papers (2022-07-12T04:53:24Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames.
We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs.
We then propose a novel internal learning extension on top of this architecture that brings an additional 10% savings without trading off decoding speed.
arXiv Detail & Related papers (2020-08-20T20:01:59Z) - Variable Rate Video Compression using a Hybrid Recurrent Convolutional
Learning Framework [1.9290392443571382]
This paper presents PredEncoder, a hybrid video compression framework based on the concept of predictive auto-encoding.
A variable-rate block encoding scheme has been proposed in the paper that leads to remarkably high quality to bit-rate ratios.
arXiv Detail & Related papers (2020-04-08T20:49:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.