Accelerating k-Means Clustering with Cover Trees
- URL: http://arxiv.org/abs/2410.15117v1
- Date: Sat, 19 Oct 2024 14:02:42 GMT
- Title: Accelerating k-Means Clustering with Cover Trees
- Authors: Andreas Lang, Erich Schubert,
- Abstract summary: We propose a new k-means algorithm based on the cover tree index, that has relatively low overhead and performs well.
We obtain a hybrid algorithm that combines the benefits of tree aggregation and bounds-based filtering.
- Score: 0.30693357740321775
- License:
- Abstract: The k-means clustering algorithm is a popular algorithm that partitions data into k clusters. There are many improvements to accelerate the standard algorithm. Most current research employs upper and lower bounds on point-to-cluster distances and the triangle inequality to reduce the number of distance computations, with only arrays as underlying data structures. These approaches cannot exploit that nearby points are likely assigned to the same cluster. We propose a new k-means algorithm based on the cover tree index, that has relatively low overhead and performs well, for a wider parameter range, than previous approaches based on the k-d tree. By combining this with upper and lower bounds, as in state-of-the-art approaches, we obtain a hybrid algorithm that combines the benefits of tree aggregation and bounds-based filtering.
Related papers
- Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - GBMST: An Efficient Minimum Spanning Tree Clustering Based on
Granular-Ball Computing [78.92205914422925]
We propose a clustering algorithm that combines multi-granularity Granular-Ball and minimum spanning tree (MST)
We construct coarsegrained granular-balls, and then use granular-balls and MST to implement the clustering method based on "large-scale priority"
Experimental results on several data sets demonstrate the power of the algorithm.
arXiv Detail & Related papers (2023-03-02T09:04:35Z) - An enhanced method of initial cluster center selection for K-means
algorithm [0.0]
We propose a novel approach to improve initial cluster selection for K-means algorithm.
The Convex Hull algorithm facilitates the computing of the first two centroids and the remaining ones are selected according to the distance from previously selected centers.
We obtained only 7.33%, 7.90%, and 0% clustering error in Iris, Letter, and Ruspini data respectively.
arXiv Detail & Related papers (2022-10-18T00:58:50Z) - A density peaks clustering algorithm with sparse search and K-d tree [16.141611031128427]
Density peaks clustering algorithm with sparse search and K-d tree is developed to solve this problem.
Experiments are carried out on datasets with different distribution characteristics, by comparing with other five typical clustering algorithms.
arXiv Detail & Related papers (2022-03-02T09:29:40Z) - K-Splits: Improved K-Means Clustering Algorithm to Automatically Detect
the Number of Clusters [0.12313056815753944]
This paper introduces k-splits, an improved hierarchical algorithm based on k-means to cluster data without prior knowledge of the number of clusters.
Accuracy and speed are two main advantages of the proposed method.
arXiv Detail & Related papers (2021-10-09T23:02:57Z) - Efficient Sparse Spherical k-Means for Document Clustering [13.217173710137363]
We propose an efficient indexing structure to improve the scalability of Spherical k-Means with respect to k.
Our approach exploits the sparsity of the input vectors and the convergence behavior of k-Means to reduce the number of comparisons on each iteration significantly.
arXiv Detail & Related papers (2021-07-30T12:02:33Z) - Exact and Approximate Hierarchical Clustering Using A* [51.187990314731344]
We introduce a new approach based on A* search for clustering.
We overcome the prohibitively large search space by combining A* with a novel emphtrellis data structure.
We empirically demonstrate that our method achieves substantially higher quality results than baselines for a particle physics use case and other clustering benchmarks.
arXiv Detail & Related papers (2021-04-14T18:15:27Z) - Clustering of Big Data with Mixed Features [3.3504365823045044]
We develop a new clustering algorithm for large data of mixed type.
The algorithm is capable of detecting outliers and clusters of relatively lower density values.
We present experimental results to verify that our algorithm works well in practice.
arXiv Detail & Related papers (2020-11-11T19:54:38Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z) - Computationally efficient sparse clustering [67.95910835079825]
We provide a finite sample analysis of a new clustering algorithm based on PCA.
We show that it achieves the minimax optimal misclustering rate in the regime $|theta infty$.
arXiv Detail & Related papers (2020-05-21T17:51:30Z) - Ball k-means [53.89505717006118]
The Ball k-means algorithm uses a ball to describe a cluster, focusing on reducing the point-centroid distance computation.
The fast speed, no extra parameters and simple design of the Ball k-means make it an all-around replacement of the naive k-means algorithm.
arXiv Detail & Related papers (2020-05-02T10:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.