K-Splits: Improved K-Means Clustering Algorithm to Automatically Detect
the Number of Clusters
- URL: http://arxiv.org/abs/2110.04660v1
- Date: Sat, 9 Oct 2021 23:02:57 GMT
- Title: K-Splits: Improved K-Means Clustering Algorithm to Automatically Detect
the Number of Clusters
- Authors: Seyed Omid Mohammadi, Ahmad Kalhor, Hossein Bodaghi (University of
Tehran, College of Engineering, School of Electrical and Computer
Engineering, Tehran, Iran)
- Abstract summary: This paper introduces k-splits, an improved hierarchical algorithm based on k-means to cluster data without prior knowledge of the number of clusters.
Accuracy and speed are two main advantages of the proposed method.
- Score: 0.12313056815753944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces k-splits, an improved hierarchical algorithm based on
k-means to cluster data without prior knowledge of the number of clusters.
K-splits starts from a small number of clusters and uses the most significant
data distribution axis to split these clusters incrementally into better fits
if needed. Accuracy and speed are two main advantages of the proposed method.
We experiment on six synthetic benchmark datasets plus two real-world datasets
MNIST and Fashion-MNIST, to prove that our algorithm has excellent accuracy in
finding the correct number of clusters under different conditions. We also show
that k-splits is faster than similar methods and can even be faster than the
standard k-means in lower dimensions. Finally, we suggest using k-splits to
uncover the exact position of centroids and then input them as initial points
to the k-means algorithm to fine-tune the results.
Related papers
- Accelerating k-Means Clustering with Cover Trees [0.30693357740321775]
We propose a new k-means algorithm based on the cover tree index, that has relatively low overhead and performs well.
We obtain a hybrid algorithm that combines the benefits of tree aggregation and bounds-based filtering.
arXiv Detail & Related papers (2024-10-19T14:02:42Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Linear time Evidence Accumulation Clustering with KMeans [0.0]
This work describes a trick which mimic the behavior of average linkage clustering.
We found a way of computing efficiently the density of a partitioning, reducing the cost from a quadratic to linear complexity.
The k-means results are comparable to the best state of the art in terms of NMI while keeping the computational cost low.
arXiv Detail & Related papers (2023-11-15T14:12:59Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - An enhanced method of initial cluster center selection for K-means
algorithm [0.0]
We propose a novel approach to improve initial cluster selection for K-means algorithm.
The Convex Hull algorithm facilitates the computing of the first two centroids and the remaining ones are selected according to the distance from previously selected centers.
We obtained only 7.33%, 7.90%, and 0% clustering error in Iris, Letter, and Ruspini data respectively.
arXiv Detail & Related papers (2022-10-18T00:58:50Z) - ck-means, a novel unsupervised learning method that combines fuzzy and
crispy clustering methods to extract intersecting data [1.827510863075184]
This paper proposes a method to cluster data that share the same intersections between two features or more.
The main idea of this novel method is to generate fuzzy clusters of data using a Fuzzy C-Means (FCM) algorithm.
The algorithm is also able to find the optimal number of clusters for the FCM and the k-means algorithm, according to the consistency of the clusters given by the Silhouette Index (SI)
arXiv Detail & Related papers (2022-06-17T19:29:50Z) - Robust Trimmed k-means [70.88503833248159]
We propose Robust Trimmed k-means (RTKM) that simultaneously identifies outliers and clusters points.
We show RTKM performs competitively with other methods on single membership data with outliers and multi-membership data without outliers.
arXiv Detail & Related papers (2021-08-16T15:49:40Z) - Determinantal consensus clustering [77.34726150561087]
We propose the use of determinantal point processes or DPP for the random restart of clustering algorithms.
DPPs favor diversity of the center points within subsets.
We show through simulations that, contrary to DPP, this technique fails both to ensure diversity, and to obtain a good coverage of all data facets.
arXiv Detail & Related papers (2021-02-07T23:48:24Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
We give efficient differentially private algorithms for basic clustering problems.
Our results imply an improved algorithm for the Sample and Aggregate privacy framework.
One of the tools used in our 1-Cluster algorithm can be employed to get a faster quantum algorithm for ClosestPair in a moderate number of dimensions.
arXiv Detail & Related papers (2020-08-18T16:22:06Z) - Ball k-means [53.89505717006118]
The Ball k-means algorithm uses a ball to describe a cluster, focusing on reducing the point-centroid distance computation.
The fast speed, no extra parameters and simple design of the Ball k-means make it an all-around replacement of the naive k-means algorithm.
arXiv Detail & Related papers (2020-05-02T10:39:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.