Automated Segmentation and Analysis of Cone Photoreceptors in Multimodal Adaptive Optics Imaging
- URL: http://arxiv.org/abs/2410.15158v1
- Date: Sat, 19 Oct 2024 17:10:38 GMT
- Title: Automated Segmentation and Analysis of Cone Photoreceptors in Multimodal Adaptive Optics Imaging
- Authors: Prajol Shrestha, Mikhail Kulyabin, Aline Sindel, Hilde R. Pedersen, Stuart Gilson, Rigmor Baraas, Andreas Maier,
- Abstract summary: We used confocal and non-confocal split detector images to analyze photoreceptors for improved accuracy.
We explored two U-Net-based segmentation models: StarDist for confocal and Cellpose for calculated modalities.
- Score: 3.7243418909643093
- License:
- Abstract: Accurate detection and segmentation of cone cells in the retina are essential for diagnosing and managing retinal diseases. In this study, we used advanced imaging techniques, including confocal and non-confocal split detector images from adaptive optics scanning light ophthalmoscopy (AOSLO), to analyze photoreceptors for improved accuracy. Precise segmentation is crucial for understanding each cone cell's shape, area, and distribution. It helps to estimate the surrounding areas occupied by rods, which allows the calculation of the density of cone photoreceptors in the area of interest. In turn, density is critical for evaluating overall retinal health and functionality. We explored two U-Net-based segmentation models: StarDist for confocal and Cellpose for calculated modalities. Analyzing cone cells in images from two modalities and achieving consistent results demonstrates the study's reliability and potential for clinical application.
Related papers
- Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
We propose a two-stage deep learning framework for real-time guidewire segmentation and tracking.
In the first stage, a Yolov5 detector is trained, using the original X-ray images as well as synthetic ones, to output the bounding boxes of possible target guidewires.
In the second stage, a novel and efficient network is proposed to segment the guidewire in each detected bounding box.
arXiv Detail & Related papers (2024-04-12T20:39:19Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
Optical Coherence Tomography Angiography is a promising tool for detecting Alzheimer's disease (AD) by imaging the retinal microvasculature.
We propose a novel deep-learning framework called Polar-Net to provide interpretable results and leverage clinical prior knowledge.
We show that Polar-Net outperforms existing state-of-the-art methods and provides more valuable pathological evidence for the association between retinal vascular changes and AD.
arXiv Detail & Related papers (2023-11-10T11:49:49Z) - LMBiS-Net: A Lightweight Multipath Bidirectional Skip Connection based
CNN for Retinal Blood Vessel Segmentation [0.0]
Blinding eye diseases are often correlated with altered retinal morphology, which can be clinically identified by segmenting retinal structures in fundus images.
Deep learning has shown promise in medical image segmentation, but its reliance on repeated convolution and pooling operations can hinder the representation of edge information.
We propose a lightweight pixel-level CNN named LMBiS-Net for the segmentation of retinal vessels with an exceptionally low number of learnable parameters.
arXiv Detail & Related papers (2023-09-10T09:03:53Z) - Increasing a microscope's effective field of view via overlapped imaging
and machine learning [4.23935174235373]
This work demonstrates a multi-lens microscopic imaging system that overlaps multiple independent fields of view on a single sensor for high-efficiency automated specimen analysis.
arXiv Detail & Related papers (2021-10-10T22:52:36Z) - Scope2Screen: Focus+Context Techniques for Pathology Tumor Assessment in
Multivariate Image Data [0.0]
Scope2Screen is a scalable software system for focus+context exploration and annotation of whole-slide, high-plex, tissue images.
Our approach scales to analyzing 100GB images of 109 or more pixels per channel, containing millions of cells.
We present interactive lensing techniques that operate at single-cell and tissue levels.
arXiv Detail & Related papers (2021-10-10T18:34:13Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
Photoacoustic imaging has the potential to revolutionise healthcare.
Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information.
We present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images.
arXiv Detail & Related papers (2021-05-20T09:33:55Z) - Segmentation of Anatomical Layers and Artifacts in Intravascular
Polarization Sensitive Optical Coherence Tomography Using Attending Physician
and Boundary Cardinality Lost Terms [4.93836246080317]
Intravascular ultrasound and optical coherence tomography are widely available for characterizing coronary stenoses.
We propose a convolutional neural network model and optimize its performance using a new multi-term loss function.
Our model segments two classes of major artifacts and detects the anatomical layers within the thickened vessel wall regions.
arXiv Detail & Related papers (2021-05-11T15:52:31Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
The identification of retinal layer thicknesses serves as an essential task be done for each patient separately.
The elaboration of automated segmentation models has become an important task in the field of medical image processing.
We propose a novel, purely data driven textitgeometric approach to order-constrained 3D OCT retinal cell layer segmentation
arXiv Detail & Related papers (2020-09-10T01:57:53Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.