Real-time guidewire tracking and segmentation in intraoperative x-ray
- URL: http://arxiv.org/abs/2404.08805v1
- Date: Fri, 12 Apr 2024 20:39:19 GMT
- Title: Real-time guidewire tracking and segmentation in intraoperative x-ray
- Authors: Baochang Zhang, Mai Bui, Cheng Wang, Felix Bourier, Heribert Schunkert, Nassir Navab,
- Abstract summary: We propose a two-stage deep learning framework for real-time guidewire segmentation and tracking.
In the first stage, a Yolov5 detector is trained, using the original X-ray images as well as synthetic ones, to output the bounding boxes of possible target guidewires.
In the second stage, a novel and efficient network is proposed to segment the guidewire in each detected bounding box.
- Score: 52.51797358201872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: During endovascular interventions, physicians have to perform accurate and immediate operations based on the available real-time information, such as the shape and position of guidewires observed on the fluoroscopic images, haptic information and the patients' physiological signals. For this purpose, real-time and accurate guidewire segmentation and tracking can enhance the visualization of guidewires and provide visual feedback for physicians during the intervention as well as for robot-assisted interventions. Nevertheless, this task often comes with the challenge of elongated deformable structures that present themselves with low contrast in the noisy fluoroscopic image sequences. To address these issues, a two-stage deep learning framework for real-time guidewire segmentation and tracking is proposed. In the first stage, a Yolov5s detector is trained, using the original X-ray images as well as synthetic ones, which is employed to output the bounding boxes of possible target guidewires. More importantly, a refinement module based on spatiotemporal constraints is incorporated to robustly localize the guidewire and remove false detections. In the second stage, a novel and efficient network is proposed to segment the guidewire in each detected bounding box. The network contains two major modules, namely a hessian-based enhancement embedding module and a dual self-attention module. Quantitative and qualitative evaluations on clinical intra-operative images demonstrate that the proposed approach significantly outperforms our baselines as well as the current state of the art and, in comparison, shows higher robustness to low quality images.
Related papers
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - Auxiliary Input in Training: Incorporating Catheter Features into Deep Learning Models for ECG-Free Dynamic Coronary Roadmapping [17.461510586128874]
Dynamic coronary roadmapping is a technology that overlays the vessel maps (the "roadmap") extracted from an offline image sequence of X-ray angiography onto a live stream of X-ray fluoroscopy in real-time.
It aims to offer navigational guidance for interventional surgeries without the need for repeated contrast agent injections, thereby reducing the risks associated with radiation exposure and kidney failure.
arXiv Detail & Related papers (2024-08-28T17:05:38Z) - CO2Wounds-V2: Extended Chronic Wounds Dataset From Leprosy Patients [57.31670527557228]
This paper introduces the CO2Wounds-V2 dataset, an extended collection of RGB wound images from leprosy patients.
It aims to enhance the development and testing of image-processing algorithms in the medical field.
arXiv Detail & Related papers (2024-08-20T13:21:57Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - ConTrack: Contextual Transformer for Device Tracking in X-ray [13.788670026481324]
ConTrack is a transformer-based network that uses both spatial and temporal contextual information for accurate device detection and tracking.
Our method achieves 45% or higher accuracy in detection and tracking when compared to state-of-the-art tracking models.
arXiv Detail & Related papers (2023-07-14T14:20:09Z) - Identifying Visible Tissue in Intraoperative Ultrasound Images during
Brain Surgery: A Method and Application [1.4408275800058263]
Intraoperative ultrasound scanning is a demanding visuotactile task.
It requires operators to simultaneously localise the ultrasound perspective and manually perform slight adjustments to the pose of the probe.
We propose a method for the identification of the visible tissue, which enables the analysis of ultrasound probe and tissue contact.
arXiv Detail & Related papers (2023-06-01T23:06:14Z) - Robust Landmark-based Stent Tracking in X-ray Fluoroscopy [10.917460255497227]
We propose an end-to-end deep learning framework for single stent tracking.
It consists of three hierarchical modules: U-Net based landmark detection, ResNet based stent proposal and feature extraction.
Experiments show that our method performs significantly better in detection compared with the state-of-the-art point-based tracking models.
arXiv Detail & Related papers (2022-07-20T14:20:03Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.