Can LVLMs Describe Videos like Humans? A Five-in-One Video Annotations Benchmark for Better Human-Machine Comparison
- URL: http://arxiv.org/abs/2410.15270v1
- Date: Sun, 20 Oct 2024 03:59:54 GMT
- Title: Can LVLMs Describe Videos like Humans? A Five-in-One Video Annotations Benchmark for Better Human-Machine Comparison
- Authors: Shiyu Hu, Xuchen Li, Xuzhao Li, Jing Zhang, Yipei Wang, Xin Zhao, Kang Hao Cheong,
- Abstract summary: Video description serves as a fundamental task for evaluating video comprehension, requiring a deep understanding of spatial and temporal dynamics.
Current benchmarks for video comprehension have notable limitations, including short video durations, brief annotations, and reliance on a single annotator's perspective.
We propose a novel benchmark, FIOVA, designed to evaluate the differences between LVLMs and human understanding more comprehensively.
- Score: 15.363132825156477
- License:
- Abstract: Large vision-language models (LVLMs) have made significant strides in addressing complex video tasks, sparking researchers' interest in their human-like multimodal understanding capabilities. Video description serves as a fundamental task for evaluating video comprehension, necessitating a deep understanding of spatial and temporal dynamics, which presents challenges for both humans and machines. Thus, investigating whether LVLMs can describe videos as comprehensively as humans (through reasonable human-machine comparisons using video captioning as a proxy task) will enhance our understanding and application of these models. However, current benchmarks for video comprehension have notable limitations, including short video durations, brief annotations, and reliance on a single annotator's perspective. These factors hinder a comprehensive assessment of LVLMs' ability to understand complex, lengthy videos and prevent the establishment of a robust human baseline that accurately reflects human video comprehension capabilities. To address these issues, we propose a novel benchmark, FIOVA (Five In One Video Annotations), designed to evaluate the differences between LVLMs and human understanding more comprehensively. FIOVA includes 3,002 long video sequences (averaging 33.6 seconds) that cover diverse scenarios with complex spatiotemporal relationships. Each video is annotated by five distinct annotators, capturing a wide range of perspectives and resulting in captions that are 4-15 times longer than existing benchmarks, thereby establishing a robust baseline that represents human understanding comprehensively for the first time in video description tasks. Using the FIOVA benchmark, we conducted an in-depth evaluation of six state-of-the-art LVLMs, comparing their performance with humans. More detailed information can be found at https://huuuuusy.github.io/fiova/.
Related papers
- HLV-1K: A Large-scale Hour-Long Video Benchmark for Time-Specific Long Video Understanding [52.696422425058245]
We build a large-scale hour-long long video benchmark, HLV-1K, designed to evaluate long video understanding models.
HLV-1K comprises 1009 hour-long videos with 14,847 high-quality question answering (QA) and multi-choice question asnwering (MCQA)
We evaluate our benchmark using existing state-of-the-art methods and demonstrate its value for testing deep long video understanding capabilities at different levels and for various tasks.
arXiv Detail & Related papers (2025-01-03T05:32:37Z) - VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM [81.15525024145697]
Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding.
However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details.
We introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding.
arXiv Detail & Related papers (2024-12-31T18:56:46Z) - SCBench: A Sports Commentary Benchmark for Video LLMs [19.13963551534595]
We develop a benchmark for sports video commentary generation for Video Large Language Models (Video LLMs)
$textbfSCBench$ is a six-dimensional metric specifically designed for our task, upon which we propose a GPT-based evaluation method.
Our results found InternVL-Chat-2 achieves the best performance with 5.44, surpassing the second-best by 1.04.
arXiv Detail & Related papers (2024-12-23T15:13:56Z) - HumanVBench: Exploring Human-Centric Video Understanding Capabilities of MLLMs with Synthetic Benchmark Data [55.739633494946204]
We present HumanVBench, an innovative benchmark meticulously crafted to bridge gaps in the evaluation of video MLLMs.
HumanVBench comprises 17 carefully designed tasks that explore two primary dimensions: inner emotion and outer manifestations, spanning static and dynamic, basic and complex, as well as single-modal and cross-modal aspects.
arXiv Detail & Related papers (2024-12-23T13:45:56Z) - MMBench-Video: A Long-Form Multi-Shot Benchmark for Holistic Video Understanding [67.56182262082729]
We introduce MMBench-Video, a quantitative benchmark to rigorously evaluate large vision-language models (LVLMs) in video understanding.
MMBench-Video incorporates lengthy videos from YouTube and employs free-form questions, mirroring practical use cases.
The benchmark is meticulously crafted to probe the models' temporal reasoning skills, with all questions human-annotated according to a carefully constructed ability taxonomy.
arXiv Detail & Related papers (2024-06-20T17:26:01Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)
We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.
We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - How Good is my Video LMM? Complex Video Reasoning and Robustness Evaluation Suite for Video-LMMs [98.37571997794072]
We present the Complex Video Reasoning and Robustness Evaluation Suite (CVRR-ES)
CVRR-ES comprehensively assesses the performance of Video-LMMs across 11 diverse real-world video dimensions.
Our findings provide valuable insights for building the next generation of human-centric AI systems.
arXiv Detail & Related papers (2024-05-06T17:59:45Z) - DeVAn: Dense Video Annotation for Video-Language Models [68.70692422636313]
We present a novel human annotated dataset for evaluating the ability for visual-language models to generate descriptions for real-world video clips.
The dataset contains 8.5K YouTube video clips of 20-60 seconds in duration and covers a wide range of topics and interests.
arXiv Detail & Related papers (2023-10-08T08:02:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.