Multiple Kernel Clustering via Local Regression Integration
- URL: http://arxiv.org/abs/2410.15304v1
- Date: Sun, 20 Oct 2024 06:26:29 GMT
- Title: Multiple Kernel Clustering via Local Regression Integration
- Authors: Liang Du, Xin Ren, Haiying Zhang, Peng Zhou,
- Abstract summary: Multiple kernel methods less consider the intrinsic manifold structure of multiple kernel data.
This paper first presents the clustering method via kernelized local regression (CKLR)
We then extend it to perform clustering via the multiple kernel local regression (CMKLR)
- Score: 4.856913393644719
- License:
- Abstract: Multiple kernel methods less consider the intrinsic manifold structure of multiple kernel data and estimate the consensus kernel matrix with quadratic number of variables, which makes it vulnerable to the noise and outliers within multiple candidate kernels. This paper first presents the clustering method via kernelized local regression (CKLR). It captures the local structure of kernel data and employs kernel regression on the local region to predict the clustering results. Moreover, this paper further extends it to perform clustering via the multiple kernel local regression (CMKLR). We construct the kernel level local regression sparse coefficient matrix for each candidate kernel, which well characterizes the kernel level manifold structure. We then aggregate all the kernel level local regression coefficients via linear weights and generate the consensus sparse local regression coefficient, which largely reduces the number of candidate variables and becomes more robust against noises and outliers within multiple kernel data. Thus, the proposed method CMKLR avoids the above two limitations. It only contains one additional hyperparameter for tuning. Extensive experimental results show that the clustering performance of the proposed method on benchmark datasets is better than that of 10 state-of-the-art multiple kernel clustering methods.
Related papers
- MIK: Modified Isolation Kernel for Biological Sequence Visualization, Classification, and Clustering [3.9146761527401424]
This research proposes a novel approach called the Modified Isolation Kernel (MIK) as an alternative to the Gaussian kernel.
MIK uses adaptive density estimation to capture local structures more accurately and integrates robustness measures.
It exhibits improved preservation of the local and global structure and enables better visualization of clusters and subclusters in the embedded space.
arXiv Detail & Related papers (2024-10-21T06:57:09Z) - MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence [97.93517982908007]
In cross-domain few-shot classification, NCC aims to learn representations to construct a metric space where few-shot classification can be performed.
In this paper, we find that there exist high similarities between NCC-learned representations of two samples from different classes.
We propose a bi-level optimization framework, emphmaximizing optimized kernel dependence (MOKD) to learn a set of class-specific representations that match the cluster structures indicated by labeled data.
arXiv Detail & Related papers (2024-05-29T05:59:52Z) - Multiple Kernel Clustering with Dual Noise Minimization [56.009011016367744]
Multiple kernel clustering (MKC) aims to group data by integrating complementary information from base kernels.
In this paper, we rigorously define dual noise and propose a novel parameter-free MKC algorithm by minimizing them.
We observe that dual noise will pollute the block diagonal structures and incur the degeneration of clustering performance, and C-noise exhibits stronger destruction than N-noise.
arXiv Detail & Related papers (2022-07-13T08:37:42Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels.
This paper proposes a novel local sample-weighted multiple kernel clustering model.
Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algo-rithms.
arXiv Detail & Related papers (2022-07-05T05:00:38Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
We introduce algorithms to select/design kernels in Gaussian process regression/kriging surrogate modeling techniques.
A first class of algorithms is kernel flow, which was introduced in a context of classification in machine learning.
A second class of algorithms is called spectral kernel ridge regression, and aims at selecting a "best" kernel such that the norm of the function to be approximated is minimal.
arXiv Detail & Related papers (2022-06-03T07:50:54Z) - Kernel Identification Through Transformers [54.3795894579111]
Kernel selection plays a central role in determining the performance of Gaussian Process (GP) models.
This work addresses the challenge of constructing custom kernel functions for high-dimensional GP regression models.
We introduce a novel approach named KITT: Kernel Identification Through Transformers.
arXiv Detail & Related papers (2021-06-15T14:32:38Z) - Manifold Adaptive Multiple Kernel K-Means for Clustering [5.8671688602326215]
We adopt the manifold adaptive kernel, instead of the original kernel, to integrate the local manifold structure of kernels.
It has been verified that the proposed method outperforms several state-of-the-art baseline methods on a variety of data sets.
arXiv Detail & Related papers (2020-09-30T02:07:53Z) - Isolation Distributional Kernel: A New Tool for Point & Group Anomaly
Detection [76.1522587605852]
Isolation Distributional Kernel (IDK) is a new way to measure the similarity between two distributions.
We demonstrate IDK's efficacy and efficiency as a new tool for kernel based anomaly detection for both point and group anomalies.
arXiv Detail & Related papers (2020-09-24T12:25:43Z) - SimpleMKKM: Simple Multiple Kernel K-means [49.500663154085586]
We propose a simple yet effective multiple kernel clustering algorithm, termed simple multiple kernel k-means (SimpleMKKM)
Our criterion is given by an intractable minimization-maximization problem in the kernel coefficient and clustering partition matrix.
We theoretically analyze the performance of SimpleMKKM in terms of its clustering generalization error.
arXiv Detail & Related papers (2020-05-11T10:06:40Z) - Fast Kernel k-means Clustering Using Incomplete Cholesky Factorization [11.631064399465089]
Kernel-based clustering algorithm can identify and capture the non-linear structure in datasets.
It can achieve better performance than linear clustering.
computing and storing the entire kernel matrix occupy so large memory that it is difficult for kernel-based clustering to deal with large-scale datasets.
arXiv Detail & Related papers (2020-02-07T15:32:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.