YOLO-RD: Introducing Relevant and Compact Explicit Knowledge to YOLO by Retriever-Dictionary
- URL: http://arxiv.org/abs/2410.15346v1
- Date: Sun, 20 Oct 2024 09:38:58 GMT
- Title: YOLO-RD: Introducing Relevant and Compact Explicit Knowledge to YOLO by Retriever-Dictionary
- Authors: Hao-Tang Tsui, Chien-Yao Wang, Hong-Yuan Mark Liao,
- Abstract summary: We introduce an innovative em textbfRetriever-emtextbfDictionary (RD) module to address this issue.
This architecture enables YOLO-based models to efficiently retrieve features from a Dictionary that contains the insight of the dataset.
- Score: 12.39040757106137
- License:
- Abstract: Identifying and localizing objects within images is a fundamental challenge, and numerous efforts have been made to enhance model accuracy by experimenting with diverse architectures and refining training strategies. Nevertheless, a prevalent limitation in existing models is overemphasizing the current input while ignoring the information from the entire dataset. We introduce an innovative {\em \textbf{R}etriever}-{\em\textbf{D}ictionary} (RD) module to address this issue. This architecture enables YOLO-based models to efficiently retrieve features from a Dictionary that contains the insight of the dataset, which is built by the knowledge from Visual Models (VM), Large Language Models (LLM), or Visual Language Models (VLM). The flexible RD enables the model to incorporate such explicit knowledge that enhances the ability to benefit multiple tasks, specifically, segmentation, detection, and classification, from pixel to image level. The experiments show that using the RD significantly improves model performance, achieving more than a 3\% increase in mean Average Precision for object detection with less than a 1\% increase in model parameters. Beyond 1-stage object detection models, the RD module improves the effectiveness of 2-stage models and DETR-based architectures, such as Faster R-CNN and Deformable DETR
Related papers
- EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
We propose EmbedLLM, a framework designed to learn compact vector representations of Large Language Models.
We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness.
Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency.
arXiv Detail & Related papers (2024-10-03T05:43:24Z) - FineCops-Ref: A new Dataset and Task for Fine-Grained Compositional Referring Expression Comprehension [10.482908189805872]
Referring Expression (REC) is a crucial cross-modal task that objectively evaluates the capabilities of language understanding, image comprehension, and language-to-image grounding.
We have established a new REC dataset characterized by two key features.
It includes negative text and images created through fine-grained editing and generation based on existing data.
arXiv Detail & Related papers (2024-09-23T06:56:51Z) - A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
We present a novel model-agnostic framework called textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA)
CEFA consists of a feature alignment module and a context enhancement module.
Our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories.
arXiv Detail & Related papers (2024-07-31T08:42:48Z) - Revisiting N-Gram Models: Their Impact in Modern Neural Networks for Handwritten Text Recognition [4.059708117119894]
This study addresses whether explicit language models, specifically n-gram models, still contribute to the performance of state-of-the-art deep learning architectures in the field of handwriting recognition.
We evaluate two prominent neural network architectures, PyLaia and DAN, with and without the integration of explicit n-gram language models.
The results show that incorporating character or subword n-gram models significantly improves the performance of ATR models on all datasets.
arXiv Detail & Related papers (2024-04-30T07:37:48Z) - Reformulating Vision-Language Foundation Models and Datasets Towards
Universal Multimodal Assistants [65.47222691674074]
Muffin framework employs pre-trained vision-language models to act as providers of visual signals.
UniMM-Chat dataset explores the complementarities of datasets to generate 1.1M high-quality and diverse multimodal instructions.
arXiv Detail & Related papers (2023-10-01T12:35:18Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - A Billion-scale Foundation Model for Remote Sensing Images [5.065947993017157]
Three key factors in pretraining foundation models are the pretraining method, the size of the pretraining dataset, and the number of model parameters.
This paper examines the effect of increasing the number of model parameters on the performance of foundation models in downstream tasks.
To the best of our knowledge, this is the first billion-scale foundation model in the remote sensing field.
arXiv Detail & Related papers (2023-04-11T13:33:45Z) - Named Entity and Relation Extraction with Multi-Modal Retrieval [51.660650522630526]
Multi-modal named entity recognition (NER) and relation extraction (RE) aim to leverage relevant image information to improve the performance of NER and RE.
We propose a novel Multi-modal Retrieval based framework (MoRe)
MoRe contains a text retrieval module and an image-based retrieval module, which retrieve related knowledge of the input text and image in the knowledge corpus respectively.
arXiv Detail & Related papers (2022-12-03T13:11:32Z) - Leveraging Advantages of Interactive and Non-Interactive Models for
Vector-Based Cross-Lingual Information Retrieval [12.514666775853598]
We propose a novel framework to leverage the advantages of interactive and non-interactive models.
We introduce semi-interactive mechanism, which builds our model upon non-interactive architecture but encodes each document together with its associated multilingual queries.
Our methods significantly boost the retrieval accuracy while maintaining the computational efficiency.
arXiv Detail & Related papers (2021-11-03T03:03:19Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.