論文の概要: A Survey of Hallucination in Large Visual Language Models
- arxiv url: http://arxiv.org/abs/2410.15359v1
- Date: Sun, 20 Oct 2024 10:58:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:12:47.427177
- Title: A Survey of Hallucination in Large Visual Language Models
- Title(参考訳): 大規模視覚言語モデルにおける幻覚に関する調査
- Authors: Wei Lan, Wenyi Chen, Qingfeng Chen, Shirui Pan, Huiyu Zhou, Yi Pan,
- Abstract要約: 幻覚の存在は、様々な分野におけるLVLMの可能性と実用性を制限している。
LVLMの構造と幻覚の発生の主な原因を紹介する。
LVLMの幻覚評価ベンチマークについて述べる。
- 参考スコア(独自算出の注目度): 48.794850395309076
- License:
- Abstract: The Large Visual Language Models (LVLMs) enhances user interaction and enriches user experience by integrating visual modality on the basis of the Large Language Models (LLMs). It has demonstrated their powerful information processing and generation capabilities. However, the existence of hallucinations has limited the potential and practical effectiveness of LVLM in various fields. Although lots of work has been devoted to the issue of hallucination mitigation and correction, there are few reviews to summary this issue. In this survey, we first introduce the background of LVLMs and hallucinations. Then, the structure of LVLMs and main causes of hallucination generation are introduced. Further, we summary recent works on hallucination correction and mitigation. In addition, the available hallucination evaluation benchmarks for LVLMs are presented from judgmental and generative perspectives. Finally, we suggest some future research directions to enhance the dependability and utility of LVLMs.
- Abstract(参考訳): LVLM(Large Visual Language Models)は、ユーザインタラクションを強化し、LLM(Large Language Models)に基づいて視覚的モダリティを統合することで、ユーザエクスペリエンスを強化する。
強力な情報処理と生成能力を実証した。
しかし、幻覚の存在は様々な分野でLVLMの可能性と実用性を制限している。
幻覚の緩和と修正の問題に多くの研究が注がれているが、この問題を要約するレビューは少ない。
本稿ではまず,LVLMの背景と幻覚について紹介する。
次に、LVLMの構造と幻覚の発生の主な原因を紹介する。
さらに,幻覚の補正と緩和に関する最近の研究を要約する。
さらに,LVLMに対する幻覚評価ベンチマークを,判断的および生成的観点から提示した。
最後に,LVLMの信頼性と実用性を高めるための今後の研究の方向性を提案する。
関連論文リスト
- Investigating and Mitigating the Multimodal Hallucination Snowballing in Large Vision-Language Models [33.19894606649144]
視覚情報を人間の言語で理解する手法は進歩しているが、LVLM(Large Vision-Language Models)は多モード幻覚に悩まされている。
生成した幻覚に遭遇する際のLVLMの挙動を評価するためのMMHalballというフレームワークを提案する。
本稿では,LVLMの出力分布を残差視覚入力から導出した値で修正する,Residual Visual Decodingと呼ばれるトレーニング不要な手法を提案する。
論文 参考訳(メタデータ) (2024-06-30T03:04:11Z) - Does Object Grounding Really Reduce Hallucination of Large Vision-Language Models? [53.89380284760555]
大型視覚言語モデル(LVLM)は、画像に見つからない概念に言及するキャプションを生成する。
これらの幻覚は、LVLMの信頼性を損なうものであり、ユビキタス採用の主な障害であることは間違いない。
最近の研究は、画像領域やオブジェクトをテキストスパンに明示的にアライメントする、接地目的の追加は、LVLM幻覚の量を減らすことを示唆している。
論文 参考訳(メタデータ) (2024-06-20T16:56:11Z) - A Survey on Hallucination in Large Vision-Language Models [18.540878498840435]
LVLM(Large Vision-Language Models)は、実践的な実装の可能性から、AIの世界において注目を集めている。
しかし,「幻覚」は,現実の視覚的内容とそれに対応するテキスト生成のミスアライメントが,LVLMを活用する上で大きな課題となる。
我々は,LVLM関連幻覚を解明し,今後の緩和を促進するために検討する。
論文 参考訳(メタデータ) (2024-02-01T00:33:21Z) - Analyzing and Mitigating Object Hallucination in Large Vision-Language Models [110.12460299261531]
大規模視覚言語モデル(LVLM)は、人間の言語で視覚情報を理解する際、顕著な能力を示した。
LVLMは依然として物体幻覚に悩まされており、画像に実際に存在しない物体を含む記述を生成するという問題である。
そこで我々は,LVLMの幻覚を再現するアルゴリズム LVLM Hallucination Revisor (LURE) を提案する。
論文 参考訳(メタデータ) (2023-10-01T18:10:53Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z) - Evaluation and Analysis of Hallucination in Large Vision-Language Models [49.19829480199372]
LVLM(Large Vision-Language Models)は近年大きな成功を収めている。
LVLMは今でも幻覚に悩まされている。
幻覚とは、視覚入力に存在しないLVLMの応答の情報を指す。
論文 参考訳(メタデータ) (2023-08-29T08:51:24Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
本研究は,大規模視覚言語モデル(LVLM)の物体幻覚に関する最初の体系的研究である。
LVLMは、記述中の対象画像と矛盾しないオブジェクトを生成する傾向がある。
対象の幻覚を評価するために,POPEと呼ばれるポーリングに基づくクエリ手法を提案する。
論文 参考訳(メタデータ) (2023-05-17T16:34:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。