Improving 3D Medical Image Segmentation at Boundary Regions using Local Self-attention and Global Volume Mixing
- URL: http://arxiv.org/abs/2410.15360v1
- Date: Sun, 20 Oct 2024 11:08:38 GMT
- Title: Improving 3D Medical Image Segmentation at Boundary Regions using Local Self-attention and Global Volume Mixing
- Authors: Daniya Najiha Abdul Kareem, Mustansar Fiaz, Noa Novershtern, Jacob Hanna, Hisham Cholakkal,
- Abstract summary: Volumetric medical image segmentation is a fundamental problem in medical image analysis where the objective is to accurately classify a given 3D volumetric medical image with voxel-level precision.
In this work, we propose a novel hierarchical encoder-decoder-based framework that strives to explicitly capture the local and global dependencies for 3D medical image segmentation.
The proposed framework exploits local volume-based self-attention to encode the local dependencies at high resolution and introduces a novel volumetric-mixer to capture the global dependencies at low-resolution feature representations.
- Score: 14.0825980706386
- License:
- Abstract: Volumetric medical image segmentation is a fundamental problem in medical image analysis where the objective is to accurately classify a given 3D volumetric medical image with voxel-level precision. In this work, we propose a novel hierarchical encoder-decoder-based framework that strives to explicitly capture the local and global dependencies for volumetric 3D medical image segmentation. The proposed framework exploits local volume-based self-attention to encode the local dependencies at high resolution and introduces a novel volumetric MLP-mixer to capture the global dependencies at low-resolution feature representations, respectively. The proposed volumetric MLP-mixer learns better associations among volumetric feature representations. These explicit local and global feature representations contribute to better learning of the shape-boundary characteristics of the organs. Extensive experiments on three different datasets reveal that the proposed method achieves favorable performance compared to state-of-the-art approaches. On the challenging Synapse Multi-organ dataset, the proposed method achieves an absolute 3.82\% gain over the state-of-the-art approaches in terms of HD95 evaluation metrics {while a similar improvement pattern is exhibited in MSD Liver and Pancreas tumor datasets}. We also provide a detailed comparison between recent architectural design choices in the 2D computer vision literature by adapting them for the problem of 3D medical image segmentation. Finally, our experiments on the ZebraFish 3D cell membrane dataset having limited training data demonstrate the superior transfer learning capabilities of the proposed vMixer model on the challenging 3D cell instance segmentation task, where accurate boundary prediction plays a vital role in distinguishing individual cell instances.
Related papers
- Discriminative Hamiltonian Variational Autoencoder for Accurate Tumor Segmentation in Data-Scarce Regimes [2.8498944632323755]
We propose an end-to-end hybrid architecture for medical image segmentation.
We use Hamiltonian Variational Autoencoders (HVAE) and a discriminative regularization to improve the quality of generated images.
Our architecture operates on a slice-by-slice basis to segment 3D volumes, capitilizing on the richly augmented dataset.
arXiv Detail & Related papers (2024-06-17T15:42:08Z) - A Mutual Inclusion Mechanism for Precise Boundary Segmentation in Medical Images [2.9137615132901704]
We present a novel deep learning-based approach, MIPC-Net, for precise boundary segmentation in medical images.
We introduce the MIPC module, which enhances the focus on channel information when extracting position features.
We also propose the GL-MIPC-Residue, a global residual connection that enhances the integration of the encoder and decoder.
arXiv Detail & Related papers (2024-04-12T02:14:35Z) - CycleINR: Cycle Implicit Neural Representation for Arbitrary-Scale Volumetric Super-Resolution of Medical Data [19.085329423308938]
CycleINR is a novel enhanced Implicit Neural Representation model for 3D medical data super-resolution.
We introduce a new metric, Slice-wise Noise Level Inconsistency (SNLI), to quantitatively assess inter-slice noise level inconsistency.
arXiv Detail & Related papers (2024-04-07T08:48:01Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - 3D Medical Image Segmentation based on multi-scale MPU-Net [5.393743755706745]
This paper proposes a tumor segmentation model MPU-Net for patient volume CT images.
It is inspired by Transformer with a global attention mechanism.
Compared with the benchmark model U-Net, MPU-Net shows excellent segmentation results.
arXiv Detail & Related papers (2023-07-11T20:46:19Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - CORPS: Cost-free Rigorous Pseudo-labeling based on Similarity-ranking
for Brain MRI Segmentation [3.1657395760137406]
We propose a semi-supervised segmentation framework built upon a novel atlas-based pseudo-labeling method and a 3D deep convolutional neural network (DCNN) for 3D brain MRI segmentation.
The experimental results demonstrate the superiority of the proposed framework over the baseline method both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-05-19T14:42:49Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.