Synthetic Data Generation for Residential Load Patterns via Recurrent GAN and Ensemble Method
- URL: http://arxiv.org/abs/2410.15379v1
- Date: Sun, 20 Oct 2024 12:33:38 GMT
- Title: Synthetic Data Generation for Residential Load Patterns via Recurrent GAN and Ensemble Method
- Authors: Xinyu Liang, Ziheng Wang, Hao Wang,
- Abstract summary: We develop the Ensemble Recurrent Generative Adversarial Network (ERGAN) framework to generate high-fidelity synthetic residential load data.
Our developed ERGAN can capture diverse load patterns across various households, thereby enhancing the realism and diversity of the synthetic data generated.
- Score: 12.161170324762645
- License:
- Abstract: Generating synthetic residential load data that can accurately represent actual electricity consumption patterns is crucial for effective power system planning and operation. The necessity for synthetic data is underscored by the inherent challenges associated with using real-world load data, such as privacy considerations and logistical complexities in large-scale data collection. In this work, we tackle the above-mentioned challenges by developing the Ensemble Recurrent Generative Adversarial Network (ERGAN) framework to generate high-fidelity synthetic residential load data. ERGAN leverages an ensemble of recurrent Generative Adversarial Networks, augmented by a loss function that concurrently takes into account adversarial loss and differences between statistical properties. Our developed ERGAN can capture diverse load patterns across various households, thereby enhancing the realism and diversity of the synthetic data generated. Comprehensive evaluations demonstrate that our method consistently outperforms established benchmarks in the synthetic generation of residential load data across various performance metrics including diversity, similarity, and statistical measures. The findings confirm the potential of ERGAN as an effective tool for energy applications requiring synthetic yet realistic load data. We also make the generated synthetic residential load patterns publicly available.
Related papers
- A Correlation- and Mean-Aware Loss Function and Benchmarking Framework to Improve GAN-based Tabular Data Synthesis [2.2451409468083114]
We propose a novel correlation- and mean-aware loss function for generative adversarial networks (GANs)
The proposed loss function demonstrates statistically significant improvements over existing methods in capturing the true data distribution.
The benchmarking framework shows that the enhanced synthetic data quality leads to improved performance in downstream machine learning tasks.
arXiv Detail & Related papers (2024-05-27T09:08:08Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - On the Equivalency, Substitutability, and Flexibility of Synthetic Data [9.459709213597707]
We investigate the equivalency of synthetic data to real-world data, the substitutability of synthetic data for real data, and the flexibility of synthetic data generators.
Our results suggest that synthetic data not only enhances model performance but also demonstrates substitutability for real data, with 60% to 80% replacement without performance loss.
arXiv Detail & Related papers (2024-03-24T17:21:32Z) - Generative Modeling for Tabular Data via Penalized Optimal Transport
Network [2.0319002824093015]
Wasserstein generative adversarial network (WGAN) is a notable improvement in generative modeling.
We propose POTNet, a generative deep neural network based on a novel, robust, and interpretable marginally-penalized Wasserstein (MPW) loss.
arXiv Detail & Related papers (2024-02-16T05:27:05Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - CasTGAN: Cascaded Generative Adversarial Network for Realistic Tabular
Data Synthesis [0.4999814847776097]
Generative adversarial networks (GANs) have drawn considerable attention in recent years for their proven capability in generating synthetic data.
The validity of the synthetic data and the underlying privacy concerns represent major challenges which are not sufficiently addressed.
arXiv Detail & Related papers (2023-07-01T16:52:18Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Smart Home Energy Management: VAE-GAN synthetic dataset generator and
Q-learning [15.995891934245334]
We propose a novel variational auto-encoder-generative adversarial network (VAE-GAN) technique for generating time-series data on energy consumption in smart homes.
We tested the online performance of Q-learning-based HEMS with real-world smart home data.
arXiv Detail & Related papers (2023-05-14T22:22:16Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.