Evaluating the Impact of Synthetic Data on Object Detection Tasks in Autonomous Driving
- URL: http://arxiv.org/abs/2503.09803v1
- Date: Wed, 12 Mar 2025 20:13:33 GMT
- Title: Evaluating the Impact of Synthetic Data on Object Detection Tasks in Autonomous Driving
- Authors: Enes Özeren, Arka Bhowmick,
- Abstract summary: We compare 2D and 3D object detection tasks trained on real, synthetic, and mixed datasets.<n>Our findings demonstrate that the use of a combination of real and synthetic data improves the robustness and generalization of object detection models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing applications of autonomous driving systems necessitates large-scale, high-quality datasets to ensure robust performance across diverse scenarios. Synthetic data has emerged as a viable solution to augment real-world datasets due to its cost-effectiveness, availability of precise ground-truth labels, and the ability to model specific edge cases. However, synthetic data may introduce distributional differences and biases that could impact model performance in real-world settings. To evaluate the utility and limitations of synthetic data, we conducted controlled experiments using multiple real-world datasets and a synthetic dataset generated by BIT Technology Solutions GmbH. Our study spans two sensor modalities, camera and LiDAR, and investigates both 2D and 3D object detection tasks. We compare models trained on real, synthetic, and mixed datasets, analyzing their robustness and generalization capabilities. Our findings demonstrate that the use of a combination of real and synthetic data improves the robustness and generalization of object detection models, underscoring the potential of synthetic data in advancing autonomous driving technologies.
Related papers
- Scaling Laws of Synthetic Data for Language Models [132.67350443447611]
We introduce SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets.
Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm.
arXiv Detail & Related papers (2025-03-25T11:07:12Z) - Enhancing Object Detection Accuracy in Autonomous Vehicles Using Synthetic Data [0.8267034114134277]
Performance of machine learning models depends on the nature and size of the training data sets.
High-quality, diverse, relevant and representative training data is essential to build accurate and reliable machine learning models.
It is hypothesised that well-designed synthetic data can improve the performance of a machine learning algorithm.
arXiv Detail & Related papers (2024-11-23T16:38:02Z) - Synthetic data augmentation for robotic mobility aids to support blind and low vision people [5.024531194389658]
Robotic mobility aids for blind and low-vision (BLV) individuals rely heavily on deep learning-based vision models.
The performance of these models is often constrained by the availability and diversity of real-world datasets.
In this study, we investigate the effectiveness of synthetic data, generated using Unreal Engine 4, for training robust vision models.
arXiv Detail & Related papers (2024-09-17T13:17:28Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - On the Equivalency, Substitutability, and Flexibility of Synthetic Data [9.459709213597707]
We investigate the equivalency of synthetic data to real-world data, the substitutability of synthetic data for real data, and the flexibility of synthetic data generators.
Our results suggest that synthetic data not only enhances model performance but also demonstrates substitutability for real data, with 60% to 80% replacement without performance loss.
arXiv Detail & Related papers (2024-03-24T17:21:32Z) - Reliability in Semantic Segmentation: Can We Use Synthetic Data? [69.28268603137546]
We show for the first time how synthetic data can be specifically generated to assess comprehensively the real-world reliability of semantic segmentation models.
This synthetic data is employed to evaluate the robustness of pretrained segmenters.
We demonstrate how our approach can be utilized to enhance the calibration and OOD detection capabilities of segmenters.
arXiv Detail & Related papers (2023-12-14T18:56:07Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study
on Telematics Data with ChatGPT [0.0]
This research delves into the construction and utilization of synthetic datasets, specifically within the telematics sphere, leveraging OpenAI's powerful language model, ChatGPT.
To illustrate this data creation process, a hands-on case study is conducted, focusing on the generation of a synthetic telematics dataset.
arXiv Detail & Related papers (2023-06-23T15:15:13Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
We introduce a new dataset called Robot Control Gestures (RoCoG-v2)
The dataset is composed of both real and synthetic videos from seven gesture classes.
We present results using state-of-the-art action recognition and domain adaptation algorithms.
arXiv Detail & Related papers (2023-03-17T23:23:55Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.