The Best Defense is a Good Offense: Countering LLM-Powered Cyberattacks
- URL: http://arxiv.org/abs/2410.15396v1
- Date: Sun, 20 Oct 2024 14:07:24 GMT
- Title: The Best Defense is a Good Offense: Countering LLM-Powered Cyberattacks
- Authors: Daniel Ayzenshteyn, Roy Weiss, Yisroel Mirsky,
- Abstract summary: Large language models (LLMs) could soon become integral to autonomous cyber agents.
We introduce novel defense strategies that exploit the inherent vulnerabilities of attacking LLMs.
Our results show defense success rates of up to 90%, demonstrating the effectiveness of turning LLM vulnerabilities into defensive strategies.
- Score: 2.6528263069045126
- License:
- Abstract: As large language models (LLMs) continue to evolve, their potential use in automating cyberattacks becomes increasingly likely. With capabilities such as reconnaissance, exploitation, and command execution, LLMs could soon become integral to autonomous cyber agents, capable of launching highly sophisticated attacks. In this paper, we introduce novel defense strategies that exploit the inherent vulnerabilities of attacking LLMs. By targeting weaknesses such as biases, trust in input, memory limitations, and their tunnel-vision approach to problem-solving, we develop techniques to mislead, delay, or neutralize these autonomous agents. We evaluate our defenses under black-box conditions, starting with single prompt-response scenarios and progressing to real-world tests using custom-built CTF machines. Our results show defense success rates of up to 90\%, demonstrating the effectiveness of turning LLM vulnerabilities into defensive strategies against LLM-driven cyber threats.
Related papers
- Defense Against Prompt Injection Attack by Leveraging Attack Techniques [66.65466992544728]
Large language models (LLMs) have achieved remarkable performance across various natural language processing (NLP) tasks.
As LLMs continue to evolve, new vulnerabilities, especially prompt injection attacks arise.
Recent attack methods leverage LLMs' instruction-following abilities and their inabilities to distinguish instructions injected in the data content.
arXiv Detail & Related papers (2024-11-01T09:14:21Z) - Hacking Back the AI-Hacker: Prompt Injection as a Defense Against LLM-driven Cyberattacks [15.726286532500971]
Large language models (LLMs) are increasingly being harnessed to automate cyberattacks.
Mantis is a framework that exploits LLMs' susceptibility to adversarial inputs to undermine malicious operations.
Mantis consistently achieved over 95% effectiveness against automated LLM-driven attacks.
arXiv Detail & Related papers (2024-10-28T10:43:34Z) - Catastrophic Cyber Capabilities Benchmark (3CB): Robustly Evaluating LLM Agent Cyber Offense Capabilities [1.1359551336076306]
We introduce the Catastrophic Cyber Capabilities Benchmark (3CB), a framework designed to rigorously assess the real-world offensive capabilities of LLM agents.
Our evaluation of modern LLMs on 3CB reveals that frontier models, such as GPT-4o and Claude 3.5 Sonnet, can perform offensive tasks such as reconnaissance and exploitation.
Our software solution and the corresponding benchmark provides a critical tool to reduce the gap between rapidly improving capabilities and robustness of cyber offense evaluations.
arXiv Detail & Related papers (2024-10-10T12:06:48Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - Can We Trust Embodied Agents? Exploring Backdoor Attacks against Embodied LLM-based Decision-Making Systems [27.316115171846953]
Large Language Models (LLMs) have shown significant promise in real-world decision-making tasks for embodied AI.
LLMs are fine-tuned to leverage their inherent common sense and reasoning abilities while being tailored to specific applications.
This fine-tuning process introduces considerable safety and security vulnerabilities, especially in safety-critical cyber-physical systems.
arXiv Detail & Related papers (2024-05-27T17:59:43Z) - AutoAttacker: A Large Language Model Guided System to Implement
Automatic Cyber-attacks [13.955084410934694]
Large language models (LLMs) have demonstrated impressive results on natural language tasks.
As LLMs inevitably advance, they may be able to automate both the pre- and post-breach attack stages.
This research can help defensive systems and teams learn to detect novel attack behaviors preemptively before their use in the wild.
arXiv Detail & Related papers (2024-03-02T00:10:45Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content.
We propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts.
arXiv Detail & Related papers (2023-10-19T06:15:05Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
Recent work shows that text moderations can produce jailbreaking prompts that bypass defenses.
We look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training.
We find that the weakness of existing discretes for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs.
arXiv Detail & Related papers (2023-09-01T17:59:44Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.