Catastrophic Cyber Capabilities Benchmark (3CB): Robustly Evaluating LLM Agent Cyber Offense Capabilities
- URL: http://arxiv.org/abs/2410.09114v2
- Date: Sat, 2 Nov 2024 09:35:35 GMT
- Title: Catastrophic Cyber Capabilities Benchmark (3CB): Robustly Evaluating LLM Agent Cyber Offense Capabilities
- Authors: Andrey Anurin, Jonathan Ng, Kibo Schaffer, Jason Schreiber, Esben Kran,
- Abstract summary: We introduce the Catastrophic Cyber Capabilities Benchmark (3CB), a framework designed to rigorously assess the real-world offensive capabilities of LLM agents.
Our evaluation of modern LLMs on 3CB reveals that frontier models, such as GPT-4o and Claude 3.5 Sonnet, can perform offensive tasks such as reconnaissance and exploitation.
Our software solution and the corresponding benchmark provides a critical tool to reduce the gap between rapidly improving capabilities and robustness of cyber offense evaluations.
- Score: 1.1359551336076306
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: LLM agents have the potential to revolutionize defensive cyber operations, but their offensive capabilities are not yet fully understood. To prepare for emerging threats, model developers and governments are evaluating the cyber capabilities of foundation models. However, these assessments often lack transparency and a comprehensive focus on offensive capabilities. In response, we introduce the Catastrophic Cyber Capabilities Benchmark (3CB), a novel framework designed to rigorously assess the real-world offensive capabilities of LLM agents. Our evaluation of modern LLMs on 3CB reveals that frontier models, such as GPT-4o and Claude 3.5 Sonnet, can perform offensive tasks such as reconnaissance and exploitation across domains ranging from binary analysis to web technologies. Conversely, smaller open-source models exhibit limited offensive capabilities. Our software solution and the corresponding benchmark provides a critical tool to reduce the gap between rapidly improving capabilities and robustness of cyber offense evaluations, aiding in the safer deployment and regulation of these powerful technologies.
Related papers
- ChatNVD: Advancing Cybersecurity Vulnerability Assessment with Large Language Models [0.46873264197900916]
This paper explores the potential application of Large Language Models (LLMs) to enhance the assessment of software vulnerabilities.
We develop three variants of ChatNVD, utilizing three prominent LLMs: GPT-4o mini by OpenAI, Llama 3 by Meta, and Gemini 1.5 Pro by Google.
To evaluate their efficacy, we conduct a comparative analysis of these models using a comprehensive questionnaire comprising common security vulnerability questions.
arXiv Detail & Related papers (2024-12-06T03:45:49Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions.
We also design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - The Best Defense is a Good Offense: Countering LLM-Powered Cyberattacks [2.6528263069045126]
Large language models (LLMs) could soon become integral to autonomous cyber agents.
We introduce novel defense strategies that exploit the inherent vulnerabilities of attacking LLMs.
Our results show defense success rates of up to 90%, demonstrating the effectiveness of turning LLM vulnerabilities into defensive strategies.
arXiv Detail & Related papers (2024-10-20T14:07:24Z) - Mitigating Backdoor Threats to Large Language Models: Advancement and Challenges [46.032173498399885]
Large Language Models (LLMs) have significantly impacted various domains, including Web search, healthcare, and software development.
As these models scale, they become more vulnerable to cybersecurity risks, particularly backdoor attacks.
arXiv Detail & Related papers (2024-09-30T06:31:36Z) - h4rm3l: A Dynamic Benchmark of Composable Jailbreak Attacks for LLM Safety Assessment [48.5611060845958]
We propose a novel benchmark of composable jailbreak attacks to move beyond static datasets and of attacks and harms.
We use h4rm3l to generate a dataset of 2656 successful novel jailbreak attacks targeting 6 state-of-the-art (SOTA) open-source and proprietary LLMs.
Several of our synthesized attacks are more effective than previously reported ones, with Attack Success rates exceeding 90% on SOTA closed language models.
arXiv Detail & Related papers (2024-08-09T01:45:39Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs)
We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection.
We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA.
arXiv Detail & Related papers (2024-05-21T13:02:27Z) - CANAL -- Cyber Activity News Alerting Language Model: Empirical Approach vs. Expensive LLM [0.0]
This research presents a new empirical framework for cyber threat modeling, adept at parsing and categorizing cyber-related information from news articles.
At the core of this framework is a fine-tuned BERT model, which we call CANAL - Cyber Activity News Alerting Language Model.
We benchmark CANAL against larger, costlier LLMs, including GPT-4, LLaMA, and Zephyr, highlighting their zero to few-shot learning in cyber news classification.
We introduce the Cyber Signal Discovery module, a strategic component designed to efficiently detect emerging cyber signals from news articles.
arXiv Detail & Related papers (2024-05-10T18:57:35Z) - Crimson: Empowering Strategic Reasoning in Cybersecurity through Large
Language Models [4.960466107669653]
We introduce Crimson, a system that enhances the strategic reasoning capabilities of Large Language Models (LLMs) within the realm of cybersecurity.
By correlating CVEs with MITRE ATT&CK techniques, Crimson advances threat anticipation and strategic defense efforts.
arXiv Detail & Related papers (2024-03-01T08:43:43Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.
This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.
We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
Recent work shows that text moderations can produce jailbreaking prompts that bypass defenses.
We look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training.
We find that the weakness of existing discretes for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs.
arXiv Detail & Related papers (2023-09-01T17:59:44Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.