論文の概要: XAI-based Feature Ensemble for Enhanced Anomaly Detection in Autonomous Driving Systems
- arxiv url: http://arxiv.org/abs/2410.15405v1
- Date: Sun, 20 Oct 2024 14:34:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:12:46.971196
- Title: XAI-based Feature Ensemble for Enhanced Anomaly Detection in Autonomous Driving Systems
- Title(参考訳): 自律運転システムにおける異常検出の強化のためのXAI機能アンサンブル
- Authors: Sazid Nazat, Mustafa Abdallah,
- Abstract要約: 本稿では,複数の Explainable AI (XAI) メソッドを統合する新しい機能アンサンブルフレームワークを提案する。
このフレームワークは、6つの多様なAIモデルにまたがって、これらのXAIメソッドによって識別されるトップ機能を融合することによって、異常の検出に不可欠な堅牢で包括的な機能のセットを生成する。
我々の技術は、AIモデルの精度、堅牢性、透明性の向上を示し、より安全で信頼性の高い自動運転システムに貢献します。
- 参考スコア(独自算出の注目度): 1.3022753212679383
- License:
- Abstract: The rapid advancement of autonomous vehicle (AV) technology has introduced significant challenges in ensuring transportation security and reliability. Traditional AI models for anomaly detection in AVs are often opaque, posing difficulties in understanding and trusting their decision making processes. This paper proposes a novel feature ensemble framework that integrates multiple Explainable AI (XAI) methods: SHAP, LIME, and DALEX with various AI models to enhance both anomaly detection and interpretability. By fusing top features identified by these XAI methods across six diverse AI models (Decision Trees, Random Forests, Deep Neural Networks, K Nearest Neighbors, Support Vector Machines, and AdaBoost), the framework creates a robust and comprehensive set of features critical for detecting anomalies. These feature sets, produced by our feature ensemble framework, are evaluated using independent classifiers (CatBoost, Logistic Regression, and LightGBM) to ensure unbiased performance. We evaluated our feature ensemble approach on two popular autonomous driving datasets (VeReMi and Sensor) datasets. Our feature ensemble technique demonstrates improved accuracy, robustness, and transparency of AI models, contributing to safer and more trustworthy autonomous driving systems.
- Abstract(参考訳): 自律走行車(AV)技術の急速な進歩は、交通安全と信頼性を確保する上で大きな課題をもたらした。
AVにおける従来の異常検出のためのAIモデルは、しばしば不透明であり、意思決定プロセスの理解と信頼性に困難を呈する。
本稿では,複数の説明可能なAI(XAI)メソッド(SHAP, LIME, DALEX)をさまざまなAIモデルと統合して,異常検出と解釈性の両方を向上させる機能アンサンブルフレームワークを提案する。
これらのXAIメソッドによって識別されるトップ機能を6つのAIモデル(決定木、ランダムフォレスト、ディープニューラルニューラルネットワーク、K Nearest Neighbors、Support Vector Machines、AdaBoost)に分散することにより、このフレームワークは異常検出に不可欠な堅牢で包括的な機能セットを作成する。
これらの特徴セットは、我々の特徴アンサンブルフレームワークによって作成され、独立分類器(CatBoost、Logistic Regression、LightGBM)を用いて評価され、非バイアス性能が保証される。
我々は2つの一般的な自律走行データセット(VeReMiとSensor)で特徴アンサンブルアプローチを評価した。
我々の特徴アンサンブル技術は、AIモデルの精度、堅牢性、透明性を改善し、より安全で信頼性の高い自動運転システムに寄与する。
関連論文リスト
- Graph-Based Multi-Modal Sensor Fusion for Autonomous Driving [3.770103075126785]
本稿では,グラフに基づく状態表現の開発に焦点をあてた,マルチモーダルセンサ融合に対する新しいアプローチを提案する。
本稿では,マルチモーダルグラフを融合する最初のオンライン状態推定手法であるSensor-Agnostic Graph-Aware Kalman Filterを提案する。
提案手法の有効性を,合成および実世界の運転データセットを用いた広範囲な実験により検証した。
論文 参考訳(メタデータ) (2024-11-06T06:58:17Z) - Transforming In-Vehicle Network Intrusion Detection: VAE-based Knowledge Distillation Meets Explainable AI [0.0]
本稿では,変分オートエンコーダ(VAE)に基づく知識蒸留手法を用いて,KD-XVAEと呼ばれる高度な侵入検知システムを提案する。
本モデルでは,1669個のパラメータで処理し,バッチ毎に0.3msの推論時間を実現することにより,複雑性を大幅に低減する。
論文 参考訳(メタデータ) (2024-10-11T17:57:16Z) - Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AIは、サイバースペースと物理空間のギャップを埋める、急速に進歩する分野だ。
VEANETでは、組み込まれたAIツインが車載AIアシスタントとして機能し、自律運転をサポートするさまざまなタスクを実行する。
論文 参考訳(メタデータ) (2024-10-02T02:20:42Z) - Explainable AI for Comparative Analysis of Intrusion Detection Models [20.683181384051395]
本研究は,ネットワークトラフィックから侵入検出を行うために,各種機械学習モデルを二分分類および多クラス分類のタスクに解析する。
すべてのモデルをUNSW-NB15データセットで90%の精度でトレーニングしました。
また、Random Forestは正確さ、時間効率、堅牢性という点で最高のパフォーマンスを提供します。
論文 参考訳(メタデータ) (2024-06-14T03:11:01Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
本稿では、画像とテキストで検索可能な表現から、運転決定を提供することができる、エンドツーエンドのオープンセット(環境/シーン)自律運転を適用するアプローチを提案する。
当社のアプローチでは, 多様なテストにおいて非並列的な結果を示すと同時に, アウト・オブ・ディストリビューションの状況において, はるかに高いロバスト性を実現している。
論文 参考訳(メタデータ) (2023-10-26T17:56:35Z) - Sampling - Variational Auto Encoder - Ensemble: In the Quest of
Explainable Artificial Intelligence [0.0]
本稿では,新しい枠組みに基づく実証的評価を提示することによって,XAIに関する談話に寄与する。
VAEとアンサンブルスタックとSHapley Additive ExPlanationsを組み合わせたハイブリッドアーキテクチャである。
この発見は、アンサンブルスタック、VAE、SHAPを組み合わせることで、モデルのパフォーマンスが向上するだけでなく、簡単に説明可能なフレームワークを提供できることを示している。
論文 参考訳(メタデータ) (2023-09-25T02:46:19Z) - AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust
Autonomous Driving [15.486799633600423]
AutoFedは、自動運転車のマルチモーダルセンサーデータをフル活用するためのフレームワークである。
本研究では, 未知の物体を背景として誤って扱うことを避けるために, 擬似ラベルを用いた新しいモデルを提案する。
また、欠落したデータモダリティを補うために、オートエンコーダに基づくデータ計算手法を提案する。
論文 参考訳(メタデータ) (2023-02-17T01:31:53Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
プライバシー保護型UAV画像認識のための半教師付きフェデレートラーニング(SSFL)フレームワークを提案する。
異なるカメラモジュールを使用したUAVによって収集されたローカルデータの数、特徴、分布には大きな違いがある。
本稿では,クライアントがトレーニングに参加する頻度,すなわちFedFreqアグリゲーションルールに基づくアグリゲーションルールを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:49:33Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
本稿では、歩行者を共同で検出し、32の歩行者属性を認識するという課題に対処する。
本稿では,複合フィールドフレームワークを用いたマルチタスク学習(MTL)モデルを提案する。
競合検出と属性認識の結果と,より安定したMTLトレーニングを示す。
論文 参考訳(メタデータ) (2020-12-04T15:10:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。