Generative AI Agents in Autonomous Machines: A Safety Perspective
- URL: http://arxiv.org/abs/2410.15489v1
- Date: Sun, 20 Oct 2024 20:07:08 GMT
- Title: Generative AI Agents in Autonomous Machines: A Safety Perspective
- Authors: Jason Jabbour, Vijay Janapa Reddi,
- Abstract summary: generative AI agents provide unparalleled capabilities, but they also have unique safety concerns.
This work investigates the evolving safety requirements when generative models are integrated as agents into physical autonomous machines.
We recommend the development and implementation of comprehensive safety scorecards for the use of generative AI technologies in autonomous machines.
- Score: 9.02400798202199
- License:
- Abstract: The integration of Generative Artificial Intelligence (AI) into autonomous machines represents a major paradigm shift in how these systems operate and unlocks new solutions to problems once deemed intractable. Although generative AI agents provide unparalleled capabilities, they also have unique safety concerns. These challenges require robust safeguards, especially for autonomous machines that operate in high-stakes environments. This work investigates the evolving safety requirements when generative models are integrated as agents into physical autonomous machines, comparing these to safety considerations in less critical AI applications. We explore the challenges and opportunities to ensure the safe deployment of generative AI-driven autonomous machines. Furthermore, we provide a forward-looking perspective on the future of AI-driven autonomous systems and emphasize the importance of evaluating and communicating safety risks. As an important step towards addressing these concerns, we recommend the development and implementation of comprehensive safety scorecards for the use of generative AI technologies in autonomous machines.
Related papers
- SafeEmbodAI: a Safety Framework for Mobile Robots in Embodied AI Systems [5.055705635181593]
Embodied AI systems, including AI-powered robots that autonomously interact with the physical world, stand to be significantly advanced.
Improper safety management can lead to failures in complex environments and make the system vulnerable to malicious command injections.
We propose textitSafeEmbodAI, a safety framework for integrating mobile robots into embodied AI systems.
arXiv Detail & Related papers (2024-09-03T05:56:50Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Inherent Diverse Redundant Safety Mechanisms for AI-based Software
Elements in Automotive Applications [1.6495054381576084]
This paper explores the role and challenges of Artificial Intelligence (AI) algorithms in autonomous driving systems.
A primary concern relates to the ability (and necessity) of AI models to generalize beyond their initial training data.
This paper investigates the risk associated with overconfident AI models in safety-critical applications like autonomous driving.
arXiv Detail & Related papers (2024-02-13T04:15:26Z) - Security Challenges in Autonomous Systems Design [1.864621482724548]
With the independence from human control, cybersecurity of such systems becomes even more critical.
With the independence from human control, cybersecurity of such systems becomes even more critical.
This paper thoroughly discusses the state of the art, identifies emerging security challenges and proposes research directions.
arXiv Detail & Related papers (2023-11-05T09:17:39Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Towards Safe, Explainable, and Regulated Autonomous Driving [11.043966021881426]
We propose a framework that integrates autonomous control, explainable AI (XAI), and regulatory compliance.
We describe relevant XAI approaches that can help achieve the goals of the framework.
arXiv Detail & Related papers (2021-11-20T05:06:22Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.