Structural Causality-based Generalizable Concept Discovery Models
- URL: http://arxiv.org/abs/2410.15491v1
- Date: Sun, 20 Oct 2024 20:09:47 GMT
- Title: Structural Causality-based Generalizable Concept Discovery Models
- Authors: Sanchit Sinha, Guangzhi Xiong, Aidong Zhang,
- Abstract summary: We propose a disentanglement mechanism utilizing a variational autoencoder (VAE) for learning mutually independent generative factors for a given dataset.
Our method assumes generative factors and concepts to form a bipartite graph, with directed causal edges from generative factors to concepts.
On specific downstream tasks, our proposed method successfully learns task-specific concepts which are explained well by the causal edges from the generative factors.
- Score: 29.932706137805713
- License:
- Abstract: The rising need for explainable deep neural network architectures has utilized semantic concepts as explainable units. Several approaches utilizing disentangled representation learning estimate the generative factors and utilize them as concepts for explaining DNNs. However, even though the generative factors for a dataset remain fixed, concepts are not fixed entities and vary based on downstream tasks. In this paper, we propose a disentanglement mechanism utilizing a variational autoencoder (VAE) for learning mutually independent generative factors for a given dataset and subsequently learning task-specific concepts using a structural causal model (SCM). Our method assumes generative factors and concepts to form a bipartite graph, with directed causal edges from generative factors to concepts. Experiments are conducted on datasets with known generative factors: D-sprites and Shapes3D. On specific downstream tasks, our proposed method successfully learns task-specific concepts which are explained well by the causal edges from the generative factors. Lastly, separate from current causal concept discovery methods, our methodology is generalizable to an arbitrary number of concepts and flexible to any downstream tasks.
Related papers
- CoLiDR: Concept Learning using Aggregated Disentangled Representations [29.932706137805713]
Interpretability of Deep Neural Networks using concept-based models offers a promising way to explain model behavior through human-understandable concepts.
A parallel line of research focuses on disentangling the data distribution into its underlying generative factors, in turn explaining the data generation process.
While both directions have received extensive attention, little work has been done on explaining concepts in terms of generative factors to unify mathematically disentangled representations and human-understandable concepts.
arXiv Detail & Related papers (2024-07-27T16:55:14Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
Learning concepts from natural high-dimensional data holds potential in building human-aligned and interpretable machine learning models.
We formalize concepts as discrete latent causal variables that are related via a hierarchical causal model.
We substantiate our theoretical claims with synthetic data experiments.
arXiv Detail & Related papers (2024-06-01T18:01:03Z) - Explaining Explainability: Understanding Concept Activation Vectors [35.37586279472797]
Recent interpretability methods propose using concept-based explanations to translate internal representations of deep learning models into a language that humans are familiar with: concepts.
This requires understanding which concepts are present in the representation space of a neural network.
In this work, we investigate three properties of Concept Activation Vectors (CAVs), which are learnt using a probe dataset of concept exemplars.
We introduce tools designed to detect the presence of these properties, provide insight into how they affect the derived explanations, and provide recommendations to minimise their impact.
arXiv Detail & Related papers (2024-04-04T17:46:20Z) - Attributing Learned Concepts in Neural Networks to Training Data [5.930268338525991]
We find evidence for convergence, where removing the 10,000 top attributing images for a concept and retraining the model does not change the location of the concept in the network.
This suggests that the features that inform the development of a concept are spread in a more diffuse manner across its exemplars, implying robustness in concept formation.
arXiv Detail & Related papers (2023-10-04T20:26:59Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
This paper presents a new symbolic-only method for the generation of hierarchical concept structures from complex sensory data.
The approach is based on Bateson's notion of difference as the key to the genesis of an idea or a concept.
The model is able to produce fairly rich yet human-readable conceptual representations without training.
arXiv Detail & Related papers (2023-07-16T15:59:13Z) - Uncovering Unique Concept Vectors through Latent Space Decomposition [0.0]
Concept-based explanations have emerged as a superior approach that is more interpretable than feature attribution estimates.
We propose a novel post-hoc unsupervised method that automatically uncovers the concepts learned by deep models during training.
Our experiments reveal that the majority of our concepts are readily understandable to humans, exhibit coherency, and bear relevance to the task at hand.
arXiv Detail & Related papers (2023-07-13T17:21:54Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
We introduce concept explanations including the class of Concept Activation Vectors (CAV)
We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats.
Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.
arXiv Detail & Related papers (2022-02-25T01:27:31Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
Generalized compositional zero-shot learning means to learn composed concepts of attribute-object pairs in a zero-shot fashion.
This paper introduces a new approach, termed translational concept embedding, to solve these two difficulties in a unified framework.
arXiv Detail & Related papers (2021-12-20T21:27:51Z) - Cause and Effect: Concept-based Explanation of Neural Networks [3.883460584034766]
We take a step in the interpretability of neural networks by examining their internal representation or neuron's activations against concepts.
We propose a framework to check the existence of a causal relationship between a concept (or its negation) and task classes.
arXiv Detail & Related papers (2021-05-14T18:54:17Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.