論文の概要: RoMemes: A multimodal meme corpus for the Romanian language
- arxiv url: http://arxiv.org/abs/2410.15497v1
- Date: Sun, 20 Oct 2024 20:26:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:13:28.343552
- Title: RoMemes: A multimodal meme corpus for the Romanian language
- Title(参考訳): RoMemes: ルーマニア語用マルチモーダル・ミームコーパス
- Authors: Vasile Păiş, Sara Niţă, Alexandru-Iulius Jerpelea, Luca Pană, Eric Curea,
- Abstract要約: 複数のアノテーションレベルを持つ実ミームをルーマニア語でキュレートしたデータセットを導入する。
結果は、インターネットのミームに直面するとき、AIツールの処理能力を改善するためにさらなる研究が必要であることを示唆している。
- 参考スコア(独自算出の注目度): 39.58317527488534
- License:
- Abstract: Memes are becoming increasingly more popular in online media, especially in social networks. They usually combine graphical representations (images, drawings, animations or video) with text to convey powerful messages. In order to extract, process and understand the messages, AI applications need to employ multimodal algorithms. In this paper, we introduce a curated dataset of real memes in the Romanian language, with multiple annotation levels. Baseline algorithms were employed to demonstrate the usability of the dataset. Results indicate that further research is needed to improve the processing capabilities of AI tools when faced with Internet memes.
- Abstract(参考訳): ミームはオンラインメディア、特にソーシャルネットワークでますます人気が高まっている。
通常、グラフィカルな表現(画像、描画、アニメーション、ビデオ)とテキストを組み合わせて強力なメッセージを伝える。
メッセージを抽出し、処理し、理解するためには、AIアプリケーションはマルチモーダルアルゴリズムを使う必要がある。
本稿では,複数のアノテーションレベルを持つ実ミームをルーマニア語でキュレートしたデータセットを提案する。
ベースラインアルゴリズムを使用して、データセットのユーザビリティを実証した。
結果は、インターネットのミームに直面するとき、AIツールの処理能力を改善するためにさらなる研究が必要であることを示唆している。
関連論文リスト
- XMeCap: Meme Caption Generation with Sub-Image Adaptability [53.2509590113364]
社会的な意味や文化的な詳細に深く根ざした噂は、機械にとってユニークな挑戦である。
我々は、教師付き微調整と強化学習を採用するtextscXMeCapフレームワークを紹介した。
textscXMeCapは、シングルイメージのミームの平均評価スコアが75.85で、マルチイメージのミームは66.32で、それぞれ3.71%と4.82%で最高のベースラインを上回っている。
論文 参考訳(メタデータ) (2024-07-24T10:51:46Z) - ArMeme: Propagandistic Content in Arabic Memes [9.48177009736915]
我々は,プロパガンダ的コンテンツの手動アノテーションを用いたアラビア・ミーム・データセットを開発した。
我々は,その検出のための計算ツールの開発を目的とした包括的解析を行う。
論文 参考訳(メタデータ) (2024-06-06T09:56:49Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
我々は、Draw-and-Understandプロジェクト、新しいモデル、マルチドメインデータセット、ビジュアルプロンプトのための挑戦的なベンチマークを紹介する。
具体的には、視覚エンコーダ、視覚プロンプトエンコーダ、LLMを接続する、エンド・ツー・エンドのマルチモーダル大規模言語モデル(MLLM)を提案する。
MLLMの視覚的プロンプト研究を進めるために,MDVP-DataとMDVP-Benchを紹介する。
論文 参考訳(メタデータ) (2024-03-29T16:26:20Z) - Meme-ingful Analysis: Enhanced Understanding of Cyberbullying in Memes
Through Multimodal Explanations [48.82168723932981]
Em MultiBully-Exは、コード混在型サイバーいじめミームからマルチモーダルな説明を行うための最初のベンチマークデータセットである。
ミームの視覚的およびテキスト的説明のために,コントラスト言語-画像事前学習 (CLIP) アプローチが提案されている。
論文 参考訳(メタデータ) (2024-01-18T11:24:30Z) - MEMEX: Detecting Explanatory Evidence for Memes via Knowledge-Enriched
Contextualization [31.209594252045566]
本稿では,ミームと関連する文書を与えられた新しいタスクMEMEXを提案し,ミームの背景を簡潔に説明するコンテキストを掘り下げることを目的とする。
MCCをベンチマークするために,共通感覚に富んだミーム表現を用いたマルチモーダル・ニューラル・フレームワークであるMIMEと,ミームとコンテキスト間の相互モーダルなセマンティック依存関係を捉える階層的アプローチを提案する。
論文 参考訳(メタデータ) (2023-05-25T10:19:35Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
本研究は,一般的なNLPタスクの補助信号として視覚情報を利用する新しい手法を提案する。
各文に対して、まず、既存の文-画像ペア上で抽出された軽トピック-画像検索テーブルから、フレキシブルな画像を検索する。
そして、テキストと画像はそれぞれトランスフォーマーエンコーダと畳み込みニューラルネットワークによって符号化される。
論文 参考訳(メタデータ) (2023-01-09T13:54:11Z) - What do you MEME? Generating Explanations for Visual Semantic Role
Labelling in Memes [42.357272117919464]
ミームにおける視覚的意味的役割のラベル付けに関する説明を生成する新しいタスク-EXCLAIMを導入する。
この目的のために,3種類のエンティティに対する意味的役割の自然言語説明を提供する新しいデータセットであるExHVVをキュレートする。
また,EXCLAIMを最適に扱える新しいマルチモーダル・マルチタスク学習フレームワークであるLUMENを提案する。
論文 参考訳(メタデータ) (2022-12-01T18:21:36Z) - Visually-Augmented Language Modeling [137.36789885105642]
本稿では,言語モデリングのための関連画像を含むテキストトークンを視覚的に拡張する,VaLMという新しい事前学習フレームワークを提案する。
視覚的に拡張されたコンテキストでは、VaLMは視覚知識融合層を使用してマルチモーダル基底言語モデリングを可能にする。
視覚情報を必要とする多モーダル・コモンセンス推論タスクについて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2022-05-20T13:41:12Z) - Do Images really do the Talking? Analysing the significance of Images in
Tamil Troll meme classification [0.16863755729554888]
我々は,ミームの分類における画像の視覚的特徴の重要性を探究する。
画像とテキストに基づいて,ミームをトロール・ノントロールのミームとして組み込もうとする。
論文 参考訳(メタデータ) (2021-08-09T09:04:42Z) - NLP-CUET@DravidianLangTech-EACL2021: Investigating Visual and Textual
Features to Identify Trolls from Multimodal Social Media Memes [0.0]
共有タスクは、マルチモーダルソーシャルメディアミームからトロールを識別することができるモデルを開発するために組織されます。
この研究は、私たちがタスクへの参加の一部として開発した計算モデルを提示します。
CNN, VGG16, Inception, Multilingual-BERT, XLM-Roberta, XLNetモデルを用いて視覚的およびテキスト的特徴を検討した。
論文 参考訳(メタデータ) (2021-02-28T11:36:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。