Predicting adaptively chosen observables in quantum systems
- URL: http://arxiv.org/abs/2410.15501v1
- Date: Sun, 20 Oct 2024 20:45:10 GMT
- Title: Predicting adaptively chosen observables in quantum systems
- Authors: Jerry Huang, Laura Lewis, Hsin-Yuan Huang, John Preskill,
- Abstract summary: This work investigates the adaptive setting for three classes of observables: local, Pauli, and bounded-Frobenius-norm observables.
We prove that $Omega(sqrtM)$ samples of an arbitrarily large unknown quantum state are necessary to predict expectation values of $M$ adaptively chosen local and Pauli observables.
- Score: 1.1562071835482224
- License:
- Abstract: Recent advances have demonstrated that $\mathcal{O}(\log M)$ measurements suffice to predict $M$ properties of arbitrarily large quantum many-body systems. However, these remarkable findings assume that the properties to be predicted are chosen independently of the data. This assumption can be violated in practice, where scientists adaptively select properties after looking at previous predictions. This work investigates the adaptive setting for three classes of observables: local, Pauli, and bounded-Frobenius-norm observables. We prove that $\Omega(\sqrt{M})$ samples of an arbitrarily large unknown quantum state are necessary to predict expectation values of $M$ adaptively chosen local and Pauli observables. We also present computationally-efficient algorithms that achieve this information-theoretic lower bound. In contrast, for bounded-Frobenius-norm observables, we devise an algorithm requiring only $\mathcal{O}(\log M)$ samples, independent of system size. Our results highlight the potential pitfalls of adaptivity in analyzing data from quantum experiments and provide new algorithmic tools to safeguard against erroneous predictions in quantum experiments.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Heisenberg-limited adaptive gradient estimation for multiple observables [0.39102514525861415]
In quantum mechanics, measuring the expectation value of a general observable has an inherent statistical uncertainty.
We provide an adaptive quantum algorithm for estimating the expectation values of $M$ general observables within root mean squared error.
Our method paves a new way to precisely understand and predict various physical properties in complicated quantum systems using quantum computers.
arXiv Detail & Related papers (2024-06-05T14:16:47Z) - Predicting Ground State Properties: Constant Sample Complexity and Deep Learning Algorithms [48.869199703062606]
A fundamental problem in quantum many-body physics is that of finding ground states of local Hamiltonians.
We introduce two approaches that achieve a constant sample complexity, independent of system size $n$, for learning ground state properties.
arXiv Detail & Related papers (2024-05-28T18:00:32Z) - Exponentially improved efficient machine learning for quantum many-body states with provable guarantees [0.0]
We provide theoretical guarantees for efficient learning of quantum many-body states and their properties, with model-independent applications.
Our results provide theoretical guarantees for efficient learning of quantum many-body states and their properties, with model-independent applications.
arXiv Detail & Related papers (2023-04-10T02:22:36Z) - Efficient learning of ground & thermal states within phases of matter [1.1470070927586014]
We consider two related tasks: (a) estimating a parameterisation of a given Gibbs state and expectation values of Lipschitz observables on this state; and (b) learning the expectation values of local observables within a thermal or quantum phase of matter.
arXiv Detail & Related papers (2023-01-30T14:39:51Z) - Validation tests of GBS quantum computers give evidence for quantum
advantage with a decoherent target [62.997667081978825]
We use positive-P phase-space simulations of grouped count probabilities as a fingerprint for verifying multi-mode data.
We show how one can disprove faked data, and apply this to a classical count algorithm.
arXiv Detail & Related papers (2022-11-07T12:00:45Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Nearly Optimal Quantum Algorithm for Estimating Multiple Expectation
Values [0.17126708168238122]
We describe an approach that leverages Gily'en et al.'s quantum gradient estimation algorithm to achieve $mathcalO(sqrtM/varepsilon)$ scaling up to logarithmic factors.
We prove that this scaling is worst-case optimal in the high-precision regime if the state preparation is treated as a black box.
arXiv Detail & Related papers (2021-11-17T18:34:17Z) - Understanding the Under-Coverage Bias in Uncertainty Estimation [58.03725169462616]
quantile regression tends to emphunder-cover than the desired coverage level in reality.
We prove that quantile regression suffers from an inherent under-coverage bias.
Our theory reveals that this under-coverage bias stems from a certain high-dimensional parameter estimation error.
arXiv Detail & Related papers (2021-06-10T06:11:55Z) - Information-theoretic bounds on quantum advantage in machine learning [6.488575826304023]
We study the performance of classical and quantum machine learning (ML) models in predicting outcomes of physical experiments.
For any input distribution $mathcalD(x)$, a classical ML model can provide accurate predictions on average by accessing $mathcalE$ a number of times comparable to the optimal quantum ML model.
arXiv Detail & Related papers (2021-01-07T10:10:09Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.