Hiding in Plain Sight: Reframing Hardware Trojan Benchmarking as a Hide&Seek Modification
- URL: http://arxiv.org/abs/2410.15550v1
- Date: Mon, 21 Oct 2024 00:45:20 GMT
- Title: Hiding in Plain Sight: Reframing Hardware Trojan Benchmarking as a Hide&Seek Modification
- Authors: Amin Sarihi, Ahmad Patooghy, Peter Jamieson, Abdel-Hameed A. Badawy,
- Abstract summary: This work focuses on advancing security research in the hardware design space by formally defining the realistic problem of Hardware Trojan (HT) detection.
The goal is to model HT detection more closely to the real world, i.e., describing the problem as The Seeker's Dilemma where a detecting agent is unaware of whether circuits are infected by HTs or not.
- Score: 0.0
- License:
- Abstract: This work focuses on advancing security research in the hardware design space by formally defining the realistic problem of Hardware Trojan (HT) detection. The goal is to model HT detection more closely to the real world, i.e., describing the problem as The Seeker's Dilemma where a detecting agent is unaware of whether circuits are infected by HTs or not. Using this theoretical problem formulation, we create a benchmark that consists of a mixture of HT-free and HT-infected restructured circuits while preserving their original functionalities. The restructured circuits are randomly infected by HTs, causing a situation where the defender is uncertain if a circuit is infected or not. We believe that our innovative benchmark and methodology of creating benchmarks will help the community judge the detection quality of different methods by comparing their success rates in circuit classification. We use our developed benchmark to evaluate three state-of-the-art HT detection tools to show baseline results for this approach. We use Principal Component Analysis to assess the strength of our benchmark, where we observe that some restructured HT-infected circuits are mapped closely to HT-free circuits, leading to significant label misclassification by detectors.
Related papers
- Corpus Poisoning via Approximate Greedy Gradient Descent [48.5847914481222]
We propose Approximate Greedy Gradient Descent, a new attack on dense retrieval systems based on the widely used HotFlip method for generating adversarial passages.
We show that our method achieves a high attack success rate on several datasets and using several retrievers, and can generalize to unseen queries and new domains.
arXiv Detail & Related papers (2024-06-07T17:02:35Z) - The Seeker's Dilemma: Realistic Formulation and Benchmarking for
Hardware Trojan Detection [0.0]
This work focuses on advancing security research in the hardware design space by formally defining the realistic problem of Hardware Trojan (HT) detection.
The goal is to model HT detection more closely to the real world, i.e., describing the problem as "The Seeker's Dilemma"
We create a benchmark that consists of a mixture of HT-free and HT-infected restructured circuits.
arXiv Detail & Related papers (2024-02-27T22:14:01Z) - Evasive Hardware Trojan through Adversarial Power Trace [6.949268510101616]
We introduce a HT obfuscation (HTO) approach to allow HTs to bypass detection method.
HTO can be implemented with only a single transistor for ASICs and FPGAs.
We show that an adaptive attacker can still design evasive HTOs by constraining the design with a spectral noise budget.
arXiv Detail & Related papers (2024-01-04T16:28:15Z) - Trojan Playground: A Reinforcement Learning Framework for Hardware Trojan Insertion and Detection [0.0]
Current Hardware Trojan (HT) detection techniques are mostly developed based on a limited set of HT benchmarks.
We introduce the first automated Reinforcement Learning (RL) HT insertion and detection framework to address these shortcomings.
arXiv Detail & Related papers (2023-05-16T16:42:07Z) - Multi-criteria Hardware Trojan Detection: A Reinforcement Learning
Approach [0.0]
Hardware Trojans (HTs) can severely alter the security and functionality of digital integrated circuits.
This paper proposes a multi-criteria reinforcement learning (RL) HT detection tool that features a tunable reward function for different HT detection scenarios.
Our preliminary results show an average of 84.2% successful HT detection in ISCAS-85 benchmark.
arXiv Detail & Related papers (2023-04-26T01:40:55Z) - Threatening Patch Attacks on Object Detection in Optical Remote Sensing
Images [55.09446477517365]
Advanced Patch Attacks (PAs) on object detection in natural images have pointed out the great safety vulnerability in methods based on deep neural networks.
We propose a more Threatening PA without the scarification of the visual quality, dubbed TPA.
To the best of our knowledge, this is the first attempt to study the PAs on object detection in O-RSIs, and we hope this work can get our readers interested in studying this topic.
arXiv Detail & Related papers (2023-02-13T02:35:49Z) - ATTRITION: Attacking Static Hardware Trojan Detection Techniques Using
Reinforcement Learning [6.87143729255904]
We develop an automated, scalable, and practical attack framework, ATTRITION, using reinforcement learning (RL)
ATTRITION evades eight detection techniques across two HT detection categories, showcasing its behavior.
We demonstrate ATTRITION's ability to evade detection techniques by evaluating designs ranging from the widely-used academic suites to larger designs such as the open-source MIPS and mor1kx processors to AES and a GPS module.
arXiv Detail & Related papers (2022-08-26T23:47:47Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Mitigating the Mutual Error Amplification for Semi-Supervised Object
Detection [92.52505195585925]
We propose a Cross Teaching (CT) method, aiming to mitigate the mutual error amplification by introducing a rectification mechanism of pseudo labels.
In contrast to existing mutual teaching methods that directly treat predictions from other detectors as pseudo labels, we propose the Label Rectification Module (LRM)
arXiv Detail & Related papers (2022-01-26T03:34:57Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.