Trojan Playground: A Reinforcement Learning Framework for Hardware Trojan Insertion and Detection
- URL: http://arxiv.org/abs/2305.09592v2
- Date: Wed, 20 Mar 2024 20:28:48 GMT
- Title: Trojan Playground: A Reinforcement Learning Framework for Hardware Trojan Insertion and Detection
- Authors: Amin Sarihi, Ahmad Patooghy, Peter Jamieson, Abdel-Hameed A. Badawy,
- Abstract summary: Current Hardware Trojan (HT) detection techniques are mostly developed based on a limited set of HT benchmarks.
We introduce the first automated Reinforcement Learning (RL) HT insertion and detection framework to address these shortcomings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current Hardware Trojan (HT) detection techniques are mostly developed based on a limited set of HT benchmarks. Existing HT benchmark circuits are generated with multiple shortcomings, i.e., i) they are heavily biased by the designers' mindset when created, and ii) they are created through a one-dimensional lens, mainly the signal activity of nets. We introduce the first automated Reinforcement Learning (RL) HT insertion and detection framework to address these shortcomings. In the HT insertion phase, an RL agent explores the circuits and finds locations best for keeping inserted HTs hidden. On the defense side, we introduce a multi-criteria RL-based HT detector that generates test vectors to discover the existence of HTs. Using the proposed framework, one can explore the HT insertion and detection design spaces to break the limitations of human mindset and benchmark issues, ultimately leading toward the next generation of innovative detectors. We demonstrate the efficacy of our framework on ISCAS-85 benchmarks, provide the attack and detection success rates, and define a methodology for comparing our techniques.
Related papers
- Hiding in Plain Sight: Reframing Hardware Trojan Benchmarking as a Hide&Seek Modification [0.0]
This work focuses on advancing security research in the hardware design space by formally defining the realistic problem of Hardware Trojan (HT) detection.
The goal is to model HT detection more closely to the real world, i.e., describing the problem as The Seeker's Dilemma where a detecting agent is unaware of whether circuits are infected by HTs or not.
arXiv Detail & Related papers (2024-10-21T00:45:20Z) - TrojanForge: Generating Adversarial Hardware Trojan Examples with Reinforcement Learning [0.0]
Hardware Trojan problem can be thought of as a continuous game between attackers and defenders.
Machine Learning has recently played a key role in advancing HT research.
TrojanForge generates adversarial examples that defeat HT detectors.
arXiv Detail & Related papers (2024-05-24T03:37:32Z) - The Seeker's Dilemma: Realistic Formulation and Benchmarking for
Hardware Trojan Detection [0.0]
This work focuses on advancing security research in the hardware design space by formally defining the realistic problem of Hardware Trojan (HT) detection.
The goal is to model HT detection more closely to the real world, i.e., describing the problem as "The Seeker's Dilemma"
We create a benchmark that consists of a mixture of HT-free and HT-infected restructured circuits.
arXiv Detail & Related papers (2024-02-27T22:14:01Z) - Rank-DETR for High Quality Object Detection [52.82810762221516]
A highly performant object detector requires accurate ranking for the bounding box predictions.
In this work, we introduce a simple and highly performant DETR-based object detector by proposing a series of rank-oriented designs.
arXiv Detail & Related papers (2023-10-13T04:48:32Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Threatening Patch Attacks on Object Detection in Optical Remote Sensing
Images [55.09446477517365]
Advanced Patch Attacks (PAs) on object detection in natural images have pointed out the great safety vulnerability in methods based on deep neural networks.
We propose a more Threatening PA without the scarification of the visual quality, dubbed TPA.
To the best of our knowledge, this is the first attempt to study the PAs on object detection in O-RSIs, and we hope this work can get our readers interested in studying this topic.
arXiv Detail & Related papers (2023-02-13T02:35:49Z) - ATTRITION: Attacking Static Hardware Trojan Detection Techniques Using
Reinforcement Learning [6.87143729255904]
We develop an automated, scalable, and practical attack framework, ATTRITION, using reinforcement learning (RL)
ATTRITION evades eight detection techniques across two HT detection categories, showcasing its behavior.
We demonstrate ATTRITION's ability to evade detection techniques by evaluating designs ranging from the widely-used academic suites to larger designs such as the open-source MIPS and mor1kx processors to AES and a GPS module.
arXiv Detail & Related papers (2022-08-26T23:47:47Z) - DETERRENT: Detecting Trojans using Reinforcement Learning [8.9149615294509]
Hardware Trojans (HTs) are a pernicious threat to integrated circuits.
In this work, we design a reinforcement learning (RL) agent that circumvents the exponential search space and returns a minimal set of patterns that is most likely to detect HTs.
arXiv Detail & Related papers (2022-08-26T22:09:47Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z) - Progressive Object Transfer Detection [84.48927705173494]
We propose a novel Progressive Object Transfer Detection (POTD) framework.
First, POTD can leverage various object supervision of different domains effectively into a progressive detection procedure.
Second, POTD consists of two delicate transfer stages, i.e., Low-Shot Transfer Detection (LSTD), and Weakly-Supervised Transfer Detection (WSTD)
arXiv Detail & Related papers (2020-02-12T00:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.