Topology-Aware Exploration of Circle of Willis for CTA and MRA: Segmentation, Detection, and Classification
- URL: http://arxiv.org/abs/2410.15614v1
- Date: Mon, 21 Oct 2024 03:33:09 GMT
- Title: Topology-Aware Exploration of Circle of Willis for CTA and MRA: Segmentation, Detection, and Classification
- Authors: Minghui Zhang, Xin You, Hanxiao Zhang, Yun Gu,
- Abstract summary: The Circle of Willis (CoW) vessels is critical to connecting major circulations of the brain.
TopCow24 provided 125 paired CTA-MRA dataset for the analysis of CoW.
We construct the universal dataset via independent intensity preprocess, followed by joint resampling and normarlization.
- Score: 12.086308374432084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Circle of Willis (CoW) vessels is critical to connecting major circulations of the brain. The topology of the vascular structure is clinical significance to evaluate the risk, severity of the neuro-vascular diseases. The CoW has two representative angiographic imaging modalities, computed tomography angiography (CTA) and magnetic resonance angiography (MRA). TopCow24 provided 125 paired CTA-MRA dataset for the analysis of CoW. To explore both CTA and MRA images in a unified framework to learn the inherent topology of Cow, we construct the universal dataset via independent intensity preprocess, followed by joint resampling and normarlization. Then, we utilize the topology-aware loss to enhance the topology completeness of the CoW and the discrimination between different classes. A complementary topology-aware refinement is further conducted to enhance the connectivity within the same class. Our method was evaluated on all the three tasks and two modalities, achieving competitive results. In the final test phase of TopCow24 Challenge, we achieved the second place in the CTA-Seg-Task, the third palce in the CTA-Box-Task, the first place in the CTA-Edg-Task, the second place in the MRA-Seg-Task, the third palce in the MRA-Box-Task, the second place in the MRA-Edg-Task.
Related papers
- ReCoGNet: Recurrent Context-Guided Network for 3D MRI Prostate Segmentation [11.248082139905865]
We propose a hybrid architecture that models MRI sequences as annotated data.<n>Our method uses a deep, preserving pretrained DeepVLab3 backbone to extract high-level semantic features from each MRI slice and a recurrent convolutional head, built with ConvLSTM layers, to integrate information across slices.<n>Compared to state-of-the-art 2D and 3D segmentation models, our approach demonstrates superior performance in terms of precision, recall, Intersection over Union (IoU), Dice Similarity Coefficient (DSC) and robustness.
arXiv Detail & Related papers (2025-06-24T14:56:55Z) - RadGenome-Chest CT: A Grounded Vision-Language Dataset for Chest CT Analysis [56.57177181778517]
RadGenome-Chest CT is a large-scale, region-guided 3D chest CT interpretation dataset based on CT-RATE.
We leverage the latest powerful universal segmentation and large language models to extend the original datasets.
arXiv Detail & Related papers (2024-04-25T17:11:37Z) - Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA [46.494640157628304]
The TopCoW dataset was the first public dataset with voxel-level annotations for thirteen possible CoW vessel components.
The TopCoW challenge formalized the CoW characterization problem as a multiclass anatomical segmentation task.
The top performing teams managed to segment many CoW components to Dice scores around 90%, but with lower scores for communicating arteries and rare variants.
arXiv Detail & Related papers (2023-12-29T16:37:08Z) - MPSeg : Multi-Phase strategy for coronary artery Segmentation [9.767759441883008]
We present MPSeg, an innovative multi-phase strategy designed for coronary artery segmentation.
Our approach specifically accommodates these structural complexities and adheres to the principles of the SYNTAX Score.
Notably, our approach demonstrated exceptional effectiveness when evaluated in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T03:33:09Z) - Learned Local Attention Maps for Synthesising Vessel Segmentations [43.314353195417326]
We present an encoder-decoder model for synthesising segmentations of the main cerebral arteries in the circle of Willis (CoW) from only T2 MRI.
It uses learned local attention maps generated by dilating the segmentation labels, which forces the network to only extract information from the T2 MRI relevant to synthesising the CoW.
arXiv Detail & Related papers (2023-08-24T15:32:27Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - TA-Net: Topology-Aware Network for Gland Segmentation [71.52681611057271]
We propose a novel topology-aware network (TA-Net) to accurately separate densely clustered and severely deformed glands.
TA-Net has a multitask learning architecture and enhances the generalization of gland segmentation.
It achieves state-of-the-art performance on the two datasets.
arXiv Detail & Related papers (2021-10-27T17:10:58Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - HF-UNet: Learning Hierarchically Inter-Task Relevance in Multi-Task
U-Net for Accurate Prostate Segmentation [56.86396352441269]
We tackle the challenging task of prostate segmentation in CT images by a two-stage network with 1) the first stage to fast localize, and 2) the second stage to accurately segment the prostate.
To precisely segment the prostate in the second stage, we formulate prostate segmentation into a multi-task learning framework, which includes a main task to segment the prostate, and an auxiliary task to delineate the prostate boundary.
By contrast, the conventional multi-task deep networks typically share most of the parameters (i.e., feature representations) across all tasks, which may limit their data fitting ability, as the specificities of different tasks are
arXiv Detail & Related papers (2020-05-21T02:53:52Z) - Simultaneous Left Atrium Anatomy and Scar Segmentations via Deep
Learning in Multiview Information with Attention [14.252180320919551]
Three-dimensional late gadolinium enhanced (LGE) cardiac MR (CMR) of left atrial scar in patients with atrial fibrillation (AF) has recently emerged as a promising technique to stratify patients.
This requires a segmentation of the high intensity scar tissue and also a segmentation of the left atrium (LA) anatomy.
We propose a joint segmentation method based on multiview two-task (MVTT)
recessive attention model working directly on 3D LGE CMR images to segment the LA and to delineate the scar.
arXiv Detail & Related papers (2020-02-02T18:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.