MPSeg : Multi-Phase strategy for coronary artery Segmentation
- URL: http://arxiv.org/abs/2311.10306v1
- Date: Fri, 17 Nov 2023 03:33:09 GMT
- Title: MPSeg : Multi-Phase strategy for coronary artery Segmentation
- Authors: Jonghoe Ku, Yong-Hee Lee, Junsup Shin, In Kyu Lee, Hyun-Woo Kim
- Abstract summary: We present MPSeg, an innovative multi-phase strategy designed for coronary artery segmentation.
Our approach specifically accommodates these structural complexities and adheres to the principles of the SYNTAX Score.
Notably, our approach demonstrated exceptional effectiveness when evaluated in the Automatic Region-based Coronary Artery Disease diagnostics.
- Score: 9.767759441883008
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate segmentation of coronary arteries is a pivotal process in assessing
cardiovascular diseases. However, the intricate structure of the cardiovascular
system presents significant challenges for automatic segmentation, especially
when utilizing methodologies like the SYNTAX Score, which relies extensively on
detailed structural information for precise risk stratification. To address
these difficulties and cater to this need, we present MPSeg, an innovative
multi-phase strategy designed for coronary artery segmentation. Our approach
specifically accommodates these structural complexities and adheres to the
principles of the SYNTAX Score. Initially, our method segregates vessels into
two categories based on their unique morphological characteristics: Left
Coronary Artery (LCA) and Right Coronary Artery (RCA). Specialized ensemble
models are then deployed for each category to execute the challenging
segmentation task. Due to LCA's higher complexity over RCA, a refinement model
is utilized to scrutinize and correct initial class predictions on segmented
areas. Notably, our approach demonstrated exceptional effectiveness when
evaluated in the Automatic Region-based Coronary Artery Disease diagnostics
using x-ray angiography imagEs (ARCADE) Segmentation Detection Algorithm
challenge at MICCAI 2023.
Related papers
- AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
We propose an attention-guided, feature-aggregated 3D deep network (AGFA-Net) for coronary artery segmentation using CCTA images.
AGFA-Net leverages attention mechanisms and feature refinement modules to capture salient features and enhance segmentation accuracy.
Evaluation on a dataset comprising 1,000 CCTA scans demonstrates AGFA-Net's superior performance, achieving an average Dice coefficient similarity of 86.74% and a Hausdorff distance of 0.23 mm.
arXiv Detail & Related papers (2024-06-13T01:04:47Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task.
We introduce a semi-supervised approach for cardiovascular stenosis segmentation.
Our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T02:01:19Z) - Multivessel Coronary Artery Segmentation and Stenosis Localisation using
Ensemble Learning [3.656984996633334]
This study introduces an end-to-end machine learning solution developed as part of our solution for the MICCAI 2023 Automatic Region-based Coronary Artery Disease diagnostics.
It aims to benchmark solutions for multivessel coronary artery segmentation and potential stenotic lesion localisation from X-ray coronary angiograms.
Our solution achieved a mean F1 score of $37.69%$ for coronary artery segmentation, and $39.41%$ for stenosis localisation, positioning our team in the 5th position on both leaderboards.
arXiv Detail & Related papers (2023-10-27T08:03:12Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
We propose a novel structure-aware registration method by incorporating structural information of related organs with segmentation-guided deep registration network.
Our proposed method can achieve higher registration accuracy and preserve anatomical structure more effectively than state-of-the-art methods.
arXiv Detail & Related papers (2023-03-08T14:08:56Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
We develop a novel auto-weighted supervision framework to tackle the scar and edema segmentation from multi-sequence CMR data.
We also design a coarse-to-fine framework to boost the small myocardial pathology region segmentation with shape prior knowledge.
Our method is promising in advancing the myocardial pathology assessment on multi-sequence CMR data.
arXiv Detail & Related papers (2022-01-14T08:59:54Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Encoder-Decoder Architectures for Clinically Relevant Coronary Artery
Segmentation [0.0]
Coronary X-ray angiography is a crucial clinical procedure for the diagnosis and treatment of coronary artery disease.
Previous approaches have used non-optimal segmentation criteria, leading to less useful results.
We propose a line of efficient and high-performance segmentation models using a new decoder architecture, the EfficientUNet++.
arXiv Detail & Related papers (2021-06-21T23:32:11Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.