GATEAU: Selecting Influential Samples for Long Context Alignment
- URL: http://arxiv.org/abs/2410.15633v4
- Date: Wed, 12 Feb 2025 03:32:34 GMT
- Title: GATEAU: Selecting Influential Samples for Long Context Alignment
- Authors: Shuzheng Si, Haozhe Zhao, Gang Chen, Yunshui Li, Kangyang Luo, Chuancheng Lv, Kaikai An, Fanchao Qi, Baobao Chang, Maosong Sun,
- Abstract summary: GATEAU identifies influential samples enriched with long-range dependency relations.<n>Experiments indicate that GATEAU effectively identifies influential samples and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities.
- Score: 62.87020831987625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aligning large language models to handle instructions with extremely long contexts has yet to be fully investigated. Previous studies attempt to scale up the available data volume by synthesizing long instruction-following samples, as constructing such a dataset tends to be challenging for annotators. However, a lack of a well-defined strategy for ensuring data quality may introduce low-quality samples and restrict the model performance. Thus, we propose GATEAU, a novel framework to address the unique challenge of long context alignment by identifying the influential samples enriched with long-range dependency relations. Specifically, GATEAU measures the long-range dependencies from two essential aspects: the difficulty of generating target responses due to the long-range dependencies, and the difficulty of understanding long inputs due to such dependencies. Comprehensive experiments indicate that GATEAU effectively identifies influential samples and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities.
Related papers
- LongAttn: Selecting Long-context Training Data via Token-level Attention [16.30530770590871]
LongAttn is a token-level framework to measure the long-range dependencies for the data.
We filter LongABC-32K from open-source long-context datasets (ArXiv, Book, and Code)
arXiv Detail & Related papers (2025-02-24T05:51:53Z) - WildLong: Synthesizing Realistic Long-Context Instruction Data at Scale [86.25450054683172]
WildLong extracts meta-information from real user queries to produce scalable data.
It supports multi-document reasoning, such as cross-document comparison and aggregation.
It surpasses existing open-source long-context-optimized models across benchmarks.
arXiv Detail & Related papers (2025-02-23T18:59:09Z) - Generalizing From Short to Long: Effective Data Synthesis for Long-Context Instruction Tuning [103.65680870130839]
We investigate how to design instruction data for the post-training phase of a long context pre-trained model.
Our controlled study reveals that models instruction-tuned on short contexts can effectively generalize to longer ones.
Based on these findings, we propose context synthesis, a novel data synthesis framework.
arXiv Detail & Related papers (2025-02-21T17:02:40Z) - A Controlled Study on Long Context Extension and Generalization in LLMs [85.4758128256142]
Broad textual understanding and in-context learning require language models that utilize full document contexts.
Due to the implementation challenges associated with directly training long-context models, many methods have been proposed for extending models to handle long contexts.
We implement a controlled protocol for extension methods with a standardized evaluation, utilizing consistent base models and extension data.
arXiv Detail & Related papers (2024-09-18T17:53:17Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
Long language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios.
Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement.
We propose the Multi-agent Interactive Multi-hop Generation framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent.
Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human
arXiv Detail & Related papers (2024-09-03T13:30:00Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
Long-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows.
We propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA)
Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning.
arXiv Detail & Related papers (2024-06-25T09:42:56Z) - Long Context is Not Long at All: A Prospector of Long-Dependency Data for Large Language Models [13.091271774417867]
Long-context modeling capabilities are important for large language models (LLMs) in various applications.
We propose a data mining framework textbfProLong that can assign each training sample with a long dependency score.
Comprehensive experiments on multiple benchmarks indicate that ProLong effectively identifies documents that carry long dependencies.
arXiv Detail & Related papers (2024-05-28T07:36:56Z) - Multi-Scale Dilated Convolution Network for Long-Term Time Series Forecasting [17.132063819650355]
We propose Multi Scale Dilated Convolution Network (MSDCN) to capture the period and trend characteristics of long time series.
We design different convolution blocks with exponentially growing dilations and varying kernel sizes to sample time series data at different scales.
To validate the effectiveness of the proposed approach, we conduct experiments on eight challenging long-term time series forecasting benchmark datasets.
arXiv Detail & Related papers (2024-05-09T02:11:01Z) - Long Context Alignment with Short Instructions and Synthesized Positions [56.1267385315404]
This paper introduces Step-Skipping Alignment (SkipAlign)
It is a new technique designed to enhance the long-context capabilities of Large Language Models (LLMs)
With a careful selection of the base model and alignment datasets, SkipAlign with only 6B parameters achieves it's best performance and comparable with strong baselines like GPT-3.5-Turbo-16K on LongBench.
arXiv Detail & Related papers (2024-05-07T01:56:22Z) - Effective Long-Context Scaling of Foundation Models [90.57254298730923]
We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens.
Our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2.
arXiv Detail & Related papers (2023-09-27T21:41:49Z) - Split-PU: Hardness-aware Training Strategy for Positive-Unlabeled
Learning [42.26185670834855]
Positive-Unlabeled (PU) learning aims to learn a model with rare positive samples and abundant unlabeled samples.
This paper focuses on improving the commonly-used nnPU with a novel training pipeline.
arXiv Detail & Related papers (2022-11-30T05:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.