Large Deviations and Improved Mean-squared Error Rates of Nonlinear SGD: Heavy-tailed Noise and Power of Symmetry
- URL: http://arxiv.org/abs/2410.15637v1
- Date: Mon, 21 Oct 2024 04:50:57 GMT
- Title: Large Deviations and Improved Mean-squared Error Rates of Nonlinear SGD: Heavy-tailed Noise and Power of Symmetry
- Authors: Aleksandar Armacki, Shuhua Yu, Dragana Bajovic, Dusan Jakovetic, Soummya Kar,
- Abstract summary: We study large deviations and mean-squared error (MSE) guarantees a general framework of nonlinear convex gradient methods in the online setting.
We provide strong results for broad bound step-sizes in the presence of heavy noise symmetric density function.
- Score: 47.653744900375855
- License:
- Abstract: We study large deviations and mean-squared error (MSE) guarantees of a general framework of nonlinear stochastic gradient methods in the online setting, in the presence of heavy-tailed noise. Unlike existing works that rely on the closed form of a nonlinearity (typically clipping), our framework treats the nonlinearity in a black-box manner, allowing us to provide unified guarantees for a broad class of bounded nonlinearities, including many popular ones, like sign, quantization, normalization, as well as component-wise and joint clipping. We provide several strong results for a broad range of step-sizes in the presence of heavy-tailed noise with symmetric probability density function, positive in a neighbourhood of zero and potentially unbounded moments. In particular, for non-convex costs we provide a large deviation upper bound for the minimum norm-squared of gradients, showing an asymptotic tail decay on an exponential scale, at a rate $\sqrt{t} / \log(t)$. We establish the accompanying rate function, showing an explicit dependence on the choice of step-size, nonlinearity, noise and problem parameters. Next, for non-convex costs and the minimum norm-squared of gradients, we derive the optimal MSE rate $\widetilde{\mathcal{O}}(t^{-1/2})$. Moreover, for strongly convex costs and the last iterate, we provide an MSE rate that can be made arbitrarily close to the optimal rate $\mathcal{O}(t^{-1})$, improving on the state-of-the-art results in the presence of heavy-tailed noise. Finally, we establish almost sure convergence of the minimum norm-squared of gradients, providing an explicit rate, which can be made arbitrarily close to $o(t^{-1/4})$.
Related papers
- Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees [56.80920351680438]
We study high-probability convergence in online learning, in the presence of heavy-tailed noise.
Compared to state-of-the-art, who only consider clipping and require noise with bounded $p$-th moments, we provide guarantees for a broad class of nonlinearities.
arXiv Detail & Related papers (2024-10-17T18:25:28Z) - Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
We consider clipped optimization problems with heavy-tailed noise with structured density.
We show that it is possible to get faster rates of convergence than $mathcalO(K-(alpha - 1)/alpha)$, when the gradients have finite moments of order.
We prove that the resulting estimates have negligible bias and controllable variance.
arXiv Detail & Related papers (2023-11-07T17:39:17Z) - High-probability Convergence Bounds for Nonlinear Stochastic Gradient Descent Under Heavy-tailed Noise [59.25598762373543]
We show that wetailed high-prob convergence guarantees of learning on streaming data in the presence of heavy-tailed noise.
We demonstrate analytically and that $ta$ can be used to the preferred choice of setting for a given problem.
arXiv Detail & Related papers (2023-10-28T18:53:41Z) - Convex and Non-convex Optimization Under Generalized Smoothness [69.69521650503431]
An analysis of convex and non- optimization methods often requires the Lipsitzness gradient, which limits the analysis by this trajectorys.
Recent work generalizes the gradient setting via the non-uniform smoothness condition.
arXiv Detail & Related papers (2023-06-02T04:21:59Z) - Nonlinear gradient mappings and stochastic optimization: A general
framework with applications to heavy-tail noise [11.768495184175052]
We introduce a general framework for nonlinear gradient descent scenarios when gradient noise exhibits heavy tails.
We show that for a nonlinearity with bounded outputs and for the gradient noise that may not have finite moments of order greater than one, the nonlinear SGD converges to zero at rate$O(/tzeta)$, $zeta in (0,1)$.
Experiments show that, while our framework is more general than existing studies of SGD under heavy-tail noise, several easy-to-implement nonlinearities from our framework are competitive with state of the art alternatives on real data sets
arXiv Detail & Related papers (2022-04-06T06:05:52Z) - High-probability Bounds for Non-Convex Stochastic Optimization with
Heavy Tails [55.561406656549686]
We consider non- Hilbert optimization using first-order algorithms for which the gradient estimates may have tails.
We show that a combination of gradient, momentum, and normalized gradient descent convergence to critical points in high-probability with best-known iteration for smooth losses.
arXiv Detail & Related papers (2021-06-28T00:17:01Z) - Last iterate convergence of SGD for Least-Squares in the Interpolation
regime [19.05750582096579]
We study the noiseless model in the fundamental least-squares setup.
We assume that an optimum predictor fits perfectly inputs and outputs $langle theta_*, phi(X) rangle = Y$, where $phi(X)$ stands for a possibly infinite dimensional non-linear feature map.
arXiv Detail & Related papers (2021-02-05T14:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.