Resource-Efficient Medical Report Generation using Large Language Models
- URL: http://arxiv.org/abs/2410.15642v1
- Date: Mon, 21 Oct 2024 05:08:18 GMT
- Title: Resource-Efficient Medical Report Generation using Large Language Models
- Authors: Abdullah, Ameer Hamza, Seong Tae Kim,
- Abstract summary: Medical report generation is the task of automatically writing radiology reports for chest X-ray images.
We propose a new framework leveraging vision-enabled Large Language Models (LLM) for the task of medical report generation.
- Score: 3.2627279988912194
- License:
- Abstract: Medical report generation is the task of automatically writing radiology reports for chest X-ray images. Manually composing these reports is a time-consuming process that is also prone to human errors. Generating medical reports can therefore help reduce the burden on radiologists. In other words, we can promote greater clinical automation in the medical domain. In this work, we propose a new framework leveraging vision-enabled Large Language Models (LLM) for the task of medical report generation. We introduce a lightweight solution that achieves better or comparative performance as compared to previous solutions on the task of medical report generation. We conduct extensive experiments exploring different model sizes and enhancement approaches, such as prefix tuning to improve the text generation abilities of the LLMs. We evaluate our approach on a prominent large-scale radiology report dataset - MIMIC-CXR. Our results demonstrate the capability of our resource-efficient framework to generate patient-specific reports with strong medical contextual understanding and high precision.
Related papers
- R2GenCSR: Retrieving Context Samples for Large Language Model based X-ray Medical Report Generation [7.4871243017824165]
This paper proposes a novel context-guided efficient X-ray medical report generation framework.
Specifically, we introduce the Mamba as the vision backbone with linear complexity, and the performance obtained is comparable to that of the strong Transformer model.
arXiv Detail & Related papers (2024-08-19T07:15:11Z) - AutoRG-Brain: Grounded Report Generation for Brain MRI [57.22149878985624]
Radiologists are tasked with interpreting a large number of images in a daily base, with the responsibility of generating corresponding reports.
This demanding workload elevates the risk of human error, potentially leading to treatment delays, increased healthcare costs, revenue loss, and operational inefficiencies.
We initiate a series of work on grounded Automatic Report Generation (AutoRG)
This system supports the delineation of brain structures, the localization of anomalies, and the generation of well-organized findings.
arXiv Detail & Related papers (2024-07-23T17:50:00Z) - Large Model driven Radiology Report Generation with Clinical Quality
Reinforcement Learning [16.849933628738277]
Radiology report generation (RRG) has attracted significant attention due to its potential to reduce the workload of radiologists.
This paper introduces a novel RRG method, textbfLM-RRG, that integrates large models (LMs) with clinical quality reinforcement learning.
Experiments on the MIMIC-CXR and IU-Xray datasets demonstrate the superiority of our method over the state of the art.
arXiv Detail & Related papers (2024-03-11T13:47:11Z) - Medical Report Generation based on Segment-Enhanced Contrastive
Representation Learning [39.17345313432545]
We propose MSCL (Medical image with Contrastive Learning) to segment organs, abnormalities, bones, etc.
We introduce a supervised contrastive loss that assigns more weight to reports that are semantically similar to the target while training.
Experimental results demonstrate the effectiveness of our proposed model, where we achieve state-of-the-art performance on the IU X-Ray public dataset.
arXiv Detail & Related papers (2023-12-26T03:33:48Z) - RaDialog: A Large Vision-Language Model for Radiology Report Generation
and Conversational Assistance [53.20640629352422]
Conversational AI tools can generate and discuss clinically correct radiology reports for a given medical image.
RaDialog is the first thoroughly evaluated and publicly available large vision-language model for radiology report generation and interactive dialog.
Our method achieves state-of-the-art clinical correctness in report generation and shows impressive abilities in interactive tasks such as correcting reports and answering questions.
arXiv Detail & Related papers (2023-11-30T16:28:40Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Longitudinal Data and a Semantic Similarity Reward for Chest X-Ray Report Generation [7.586632627817609]
Radiologists face high burnout rates, partly due to the increasing volume of Chest X-rays (CXRs) requiring interpretation and reporting.
Our proposed CXR report generator integrates elements of the workflow and introduces a novel reward for reinforcement learning.
Results from our study demonstrate that the proposed model generates reports that are more aligned with radiologists' reports than state-of-the-art models.
arXiv Detail & Related papers (2023-07-19T05:41:14Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Cross-modal Memory Networks for Radiology Report Generation [30.13916304931662]
Cross-modal memory networks (CMN) are proposed to enhance the encoder-decoder framework for radiology report generation.
Our model is able to better align information from radiology images and texts so as to help generating more accurate reports in terms of clinical indicators.
arXiv Detail & Related papers (2022-04-28T02:32:53Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
Report generation for medical imaging promises to reduce workload and assist diagnosis in clinical practice.
Recent work has shown that deep learning models can successfully caption natural images.
We propose variational topic inference for automatic report generation.
arXiv Detail & Related papers (2021-07-15T13:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.