Longitudinal Data and a Semantic Similarity Reward for Chest X-Ray Report Generation
- URL: http://arxiv.org/abs/2307.09758v4
- Date: Wed, 19 Jun 2024 03:34:18 GMT
- Title: Longitudinal Data and a Semantic Similarity Reward for Chest X-Ray Report Generation
- Authors: Aaron Nicolson, Jason Dowling, Bevan Koopman,
- Abstract summary: Radiologists face high burnout rates, partly due to the increasing volume of Chest X-rays (CXRs) requiring interpretation and reporting.
Our proposed CXR report generator integrates elements of the workflow and introduces a novel reward for reinforcement learning.
Results from our study demonstrate that the proposed model generates reports that are more aligned with radiologists' reports than state-of-the-art models.
- Score: 7.586632627817609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radiologists face high burnout rates, partially due to the increasing volume of Chest X-rays (CXRs) requiring interpretation and reporting. Automated CXR report generation holds promise for reducing this burden and improving patient care. While current models show potential, their diagnostic accuracy is limited. Our proposed CXR report generator integrates elements of the radiologist workflow and introduces a novel reward for reinforcement learning. Our approach leverages longitudinal data from a patient's prior CXR study and effectively handles cases where no prior study exist, thus mirroring the radiologist's workflow. In contrast, existing models typically lack this flexibility, often requiring prior studies for the model to function optimally. Our approach also incorporates all CXRs from a patient's study and distinguishes between report sections through section embeddings. Our reward for reinforcement learning leverages CXR-BERT, which forces our model to learn the clinical semantics of radiology reporting. We conduct experiments on publicly available datasets -- MIMIC-CXR and Open-i IU X-ray -- with metrics shown to more closely correlate with radiologists' assessment of reporting. Results from our study demonstrate that the proposed model generates reports that are more aligned with radiologists' reports than state-of-the-art models, such as those utilising large language models, reinforcement learning, and multi-task learning. The proposed model improves the diagnostic accuracy of CXR report generation, which could one day reduce radiologists' workload and enhance patient care. Our Hugging Face checkpoint (https://huggingface.co/aehrc/cxrmate) and code (https://github.com/aehrc/cxrmate) are publicly available.
Related papers
- FG-CXR: A Radiologist-Aligned Gaze Dataset for Enhancing Interpretability in Chest X-Ray Report Generation [9.374812942790953]
We introduce Fine-Grained CXR dataset, which provides fine-grained paired information between the captions generated by radiologists and the corresponding gaze attention heatmaps for each anatomy.
Our analysis reveals that simply applying black-box image captioning methods to generate reports cannot adequately explain which information in CXR is utilized.
We propose a novel explainable radiologist's attention generator network (Gen-XAI) that mimics the diagnosis process of radiologists, explicitly constraining its output to closely align with both radiologist's gaze attention and transcript.
arXiv Detail & Related papers (2024-11-23T02:22:40Z) - Resource-Efficient Medical Report Generation using Large Language Models [3.2627279988912194]
Medical report generation is the task of automatically writing radiology reports for chest X-ray images.
We propose a new framework leveraging vision-enabled Large Language Models (LLM) for the task of medical report generation.
arXiv Detail & Related papers (2024-10-21T05:08:18Z) - Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
We introduce a novel method, textbfStructural textbfEntities extraction and patient indications textbfIncorporation (SEI) for chest X-ray report generation.
We employ a structural entities extraction (SEE) approach to eliminate presentation-style vocabulary in reports.
We propose a cross-modal fusion network to integrate information from X-ray images, similar historical cases, and patient-specific indications.
arXiv Detail & Related papers (2024-05-23T01:29:47Z) - Large Model driven Radiology Report Generation with Clinical Quality
Reinforcement Learning [16.849933628738277]
Radiology report generation (RRG) has attracted significant attention due to its potential to reduce the workload of radiologists.
This paper introduces a novel RRG method, textbfLM-RRG, that integrates large models (LMs) with clinical quality reinforcement learning.
Experiments on the MIMIC-CXR and IU-Xray datasets demonstrate the superiority of our method over the state of the art.
arXiv Detail & Related papers (2024-03-11T13:47:11Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automated Radiological Report Generation For Chest X-Rays With
Weakly-Supervised End-to-End Deep Learning [17.315387269810426]
We built a database containing more than 12,000 CXR scans and radiological reports.
We developed a model based on deep convolutional neural network and recurrent network with attention mechanism.
The model provides automated recognition of given scans and generation of reports.
arXiv Detail & Related papers (2020-06-18T08:12:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.