論文の概要: Revealing and Mitigating the Local Pattern Shortcuts of Mamba
- arxiv url: http://arxiv.org/abs/2410.15678v1
- Date: Mon, 21 Oct 2024 06:42:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:21:20.607468
- Title: Revealing and Mitigating the Local Pattern Shortcuts of Mamba
- Title(参考訳): マンバの局所パターンショートカットの探索と修正
- Authors: Wangjie You, Zecheng Tang, Juntao Li, Lili Yao, Min Zhang,
- Abstract要約: この問題に対処するために,グローバルな選択モジュールをMambaモデルに導入する。
提案手法では,4M余剰パラメータの導入により,分散情報を用いたタスクにおいて,Mambaモデル(130M)が大幅な改善を実現することができる。
- 参考スコア(独自算出の注目度): 25.19835905377437
- License:
- Abstract: Large language models (LLMs) have advanced significantly due to the attention mechanism, but their quadratic complexity and linear memory demands limit their performance on long-context tasks. Recently, researchers introduced Mamba, an advanced model built upon State Space Models(SSMs) that offers linear complexity and constant memory. Although Mamba is reported to match or surpass the performance of attention-based models, our analysis reveals a performance gap: Mamba excels in tasks that involve localized key information but faces challenges with tasks that require handling distributed key information. Our controlled experiments suggest that this inconsistency arises from Mamba's reliance on local pattern shortcuts, which enable the model to remember local key information within its limited memory but hinder its ability to retain more dispersed information. Therefore, we introduce a global selection module into the Mamba model to address this issue. Experiments on both existing and proposed synthetic tasks, as well as real-world tasks, demonstrate the effectiveness of our method. Notably, with the introduction of only 4M extra parameters, our approach enables the Mamba model(130M) to achieve a significant improvement on tasks with distributed information, increasing its performance from 0 to 80.54 points.
- Abstract(参考訳): 大規模言語モデル(LLM)は、注意機構によって大幅に進歩しているが、その二次的な複雑さと線形メモリ要求は、長文タスクにおける性能を制限している。
最近、研究者は、線形複雑性と定数メモリを提供するステートスペースモデル(SSM)上に構築された高度なモデルであるMambaを紹介した。
Mambaは、ローカライズされたキー情報を含むタスクに優れているが、分散されたキー情報を扱う必要のあるタスクでは課題に直面している。
制御実験の結果,この不整合性は局所的パターンのショートカットに依存しているため,限られたメモリ内の局所的なキー情報を記憶できるが,より分散した情報を保持できないことが示唆された。
そこで,この問題に対処するために,グローバルな選択モジュールをMambaモデルに導入する。
本手法の有効性を実証するために,既存および提案された合成タスクと実世界のタスクの両方の実験を行った。
特に,4M余剰パラメータの導入により,分散情報を用いたタスクにおいて,Mambaモデル(130M)が大幅な改善を実現し,性能が0から80.54ポイントに向上した。
関連論文リスト
- HRVMamba: High-Resolution Visual State Space Model for Dense Prediction [60.80423207808076]
効率的なハードウェアを意識した設計のステートスペースモデル(SSM)は、コンピュータビジョンタスクにおいて大きな可能性を証明している。
これらのモデルは、誘導バイアスの不足、長距離の忘れ、低解像度の出力表現の3つの主要な課題によって制約されている。
本稿では, 変形可能な畳み込みを利用して, 長距離忘れ問題を緩和する動的ビジュアル状態空間(DVSS)ブロックを提案する。
また,DVSSブロックに基づく高分解能視覚空間モデル(HRVMamba)を導入し,プロセス全体を通して高分解能表現を保存する。
論文 参考訳(メタデータ) (2024-10-04T06:19:29Z) - LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
局所的意図的マンバブロックは、大域的コンテキストと局所的詳細の両方を線形複雑性でキャプチャする。
このモデルは, 256x256の解像度で, ImageNet上の様々なモデルスケールでDiTの性能を上回り, 優れたスケーラビリティを示す。
ImageNet 256x256 と 512x512 の最先端拡散モデルと比較すると,最大 62% GFLOP の削減など,我々の最大のモデルには顕著な利点がある。
論文 参考訳(メタデータ) (2024-08-05T16:39:39Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
本研究では,マンバに特化して設計された文脈拡張手法であるDeciMambaを紹介する。
DeciMambaは、トレーニング中に見たものよりも25倍長く、余分な計算資源を使わずに、コンテキスト長を外挿できることを示す。
論文 参考訳(メタデータ) (2024-06-20T17:40:18Z) - MambaLRP: Explaining Selective State Space Sequence Models [18.133138020777295]
選択状態空間列モデル(マンバモデルと呼ばれる)を用いた最近のシーケンスモデリング手法は、関心が高まりつつある。
これらのモデルは、線形時間における長いシーケンスの効率的な処理を可能にし、言語モデリングのような広範囲のアプリケーションで急速に採用されている。
現実のシナリオにおける信頼性の高い利用を促進するためには、透明性を高めることが重要です。
論文 参考訳(メタデータ) (2024-06-11T12:15:47Z) - Mamba as Decision Maker: Exploring Multi-scale Sequence Modeling in Offline Reinforcement Learning [16.23977055134524]
我々はMamba Decision Maker (MambaDM) という新しいアクション予測手法を提案する。
MambaDMは、マルチスケール依存関係の効率的なモデリングのため、シーケンスモデリングのパラダイムの有望な代替品として期待されている。
本稿では,RL領域におけるMambaDMのシーケンスモデリング機能について述べる。
論文 参考訳(メタデータ) (2024-06-04T06:49:18Z) - MambaMIL: Enhancing Long Sequence Modeling with Sequence Reordering in
Computational Pathology [10.933433327636918]
MIL(Multiple Instance Learning)は、WSI(Whole Slide Images)内の識別的特徴表現を計算病理学で抽出する主要なパラダイムとして登場した。
本稿では,線形複雑度を持つ長周期モデリングのために,Selective Scan Space State Sequential Model(Mamba)をMIL(Multiple Instance Learning)に組み込む。
提案するフレームワークは,最先端のMIL手法に対して良好に機能する。
論文 参考訳(メタデータ) (2024-03-11T15:17:25Z) - MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection [72.46396769642787]
ネスト構造であるMamba-in-Mamba(MiM-ISTD)を開発した。
MiM-ISTDはSOTA法より8倍高速で、2048×2048$のイメージでテストすると、GPUメモリ使用率を62.2$%削減する。
論文 参考訳(メタデータ) (2024-03-04T15:57:29Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
我々は、最近の代表的状態空間モデル(SSM)であるMambaの成功を、NLPからポイントクラウド分析タスクへ転送するPointMambaを提案する。
従来のトランスフォーマーとは異なり、PointMambaは線形複雑性アルゴリズムを採用し、グローバルなモデリング能力を示しながら計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-16T14:56:13Z) - Can Mamba Learn How to Learn? A Comparative Study on In-Context Learning Tasks [25.092302463435523]
状態空間モデル(SSM)は言語モデリングにおけるトランスフォーマーネットワークの代替として提案されている。
本研究では,各種タスクを対象としたトランスフォーマーモデルに対して,マンバに着目したSSMのICL性能を評価する。
論文 参考訳(メタデータ) (2024-02-06T18:56:35Z) - Swin-UMamba: Mamba-based UNet with ImageNet-based pretraining [85.08169822181685]
本稿では,医療画像のセグメンテーションに特化して設計された新しいマンバモデルSwin-UMambaを紹介する。
Swin-UMamba は CNN や ViT,最新の Mamba ベースのモデルと比較して,優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-05T18:58:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。