論文の概要: Federated Learning with MMD-based Early Stopping for Adaptive GNSS Interference Classification
- arxiv url: http://arxiv.org/abs/2410.15681v2
- Date: Mon, 30 Dec 2024 13:10:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 15:59:58.292608
- Title: Federated Learning with MMD-based Early Stopping for Adaptive GNSS Interference Classification
- Title(参考訳): 適応型GNSS干渉分類のためのMDDに基づく早期停止によるフェデレーション学習
- Authors: Nishant S. Gaikwad, Lucas Heublein, Nisha L. Raichur, Tobias Feigl, Christopher Mutschler, Felix Ott,
- Abstract要約: フェデレートラーニング(FL)は、複数のデバイスがローカルサーバ上のデータを維持しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
本稿では,グローバルサーバ上でのモデルの重み付けと数ショット学習を用いたFL手法を提案する。
FLの模範的な応用は、グローバルナビゲーション衛星システム(GNSS)受信機からのスナップショットに基づいた干渉分類のために、高速道路に沿って機械学習モデルをオーケストレーションすることである。
- 参考スコア(独自算出の注目度): 4.674584508653125
- License:
- Abstract: Federated learning (FL) enables multiple devices to collaboratively train a global model while maintaining data on local servers. Each device trains the model on its local server and shares only the model updates (i.e., gradient weights) during the aggregation step. A significant challenge in FL is managing the feature distribution of novel and unbalanced data across devices. In this paper, we propose an FL approach using few-shot learning and aggregation of the model weights on a global server. We introduce a dynamic early stopping method to balance out-of-distribution classes based on representation learning, specifically utilizing the maximum mean discrepancy of feature embeddings between local and global models. An exemplary application of FL is to orchestrate machine learning models along highways for interference classification based on snapshots from global navigation satellite system (GNSS) receivers. Extensive experiments on four GNSS datasets from two real-world highways and controlled environments demonstrate that our FL method surpasses state-of-the-art techniques in adapting to both novel interference classes and multipath scenarios.
- Abstract(参考訳): フェデレートラーニング(FL)は、複数のデバイスがローカルサーバ上のデータを維持しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
各デバイスは、ローカルサーバ上でモデルをトレーニングし、アグリゲーションステップ中にモデル更新(すなわち勾配重み付け)のみを共有する。
FLにおける重要な課題は、デバイス間での新規データとアンバランスデータの特徴分布の管理である。
本稿では,大域的サーバ上でのモデル重みの蓄積と少数ショット学習を用いたFL手法を提案する。
本稿では,局所モデルとグローバルモデル間の特徴埋め込みの最大値の差を利用して,表現学習に基づく分布外クラスのバランスをとるための動的早期停止手法を提案する。
FLの模範的な応用は、グローバルナビゲーション衛星システム(GNSS)受信機からのスナップショットに基づいた干渉分類のために、高速道路に沿って機械学習モデルをオーケストレーションすることである。
2つの実世界の高速道路と制御された環境から得られた4つのGNSSデータセットの大規模な実験により、我々のFL法が新しい干渉クラスとマルチパスシナリオの両方に適応する最先端技術を上回ることを示した。
関連論文リスト
- Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
同期フェデレーションラーニング(FL)は、協調エッジラーニングの一般的なパラダイムである。
一部のデバイスは計算資源が限られており、様々な可用性があるため、FLレイテンシはストラグラーに非常に敏感である。
本稿では,NNの最適化手法をバックプロパゲーションにより活用し,グローバルモデルを階層的に更新するストラグラー対応層対応学習(SALF)を提案する。
論文 参考訳(メタデータ) (2024-03-27T09:14:36Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - FedCAT: Towards Accurate Federated Learning via Device Concatenation [4.416919766772866]
Federated Learning(FL)は、すべてのデバイスが、ローカルデータのプライバシを公開することなく、グローバルモデルを協調的にトレーニングすることを可能にする。
非IIDシナリオでは、データの不均一性に起因する重みのばらつきにより、FLモデルの分類精度が大幅に低下する。
本稿では,Fed-Cat という新しいFLアプローチを導入し,提案したデバイス選択戦略とデバイス結合に基づく局所学習手法に基づいて,高精度なモデル精度を実現する。
論文 参考訳(メタデータ) (2022-02-23T10:08:43Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - Federated Learning with Downlink Device Selection [92.14944020945846]
我々は,無線ネットワークのエッジにおいて,プライバシーに敏感なデータを用いてグローバルモデルを協調訓練するフェデレーションエッジ学習について検討した。
パラメータサーバ(PS)は、グローバルモデルを追跡し、無線エッジデバイスと共有して、プライベートローカルデータを使用したトレーニングを行う。
デバイス選択は、PSがデバイスとグローバルモデルを共有するダウンリンクチャネルに基づいて検討する。
論文 参考訳(メタデータ) (2021-07-07T22:42:39Z) - Federated Learning With Quantized Global Model Updates [84.55126371346452]
モバイル端末がローカルデータセットを使用してグローバルモデルをトレーニングできるフェデレーション学習について検討する。
本稿では,大域的モデルと局所的モデル更新の両方を,送信前に量子化する損失FL(LFL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-18T16:55:20Z) - Continual Local Training for Better Initialization of Federated Models [14.289213162030816]
フェデレートラーニング(Federated Learning、FL)とは、機械学習モデルを分散システムで直接訓練する学習パラダイムである。
一般的なFLアルゴリズムであるemphFederated Averaging (FedAvg)は重みのばらつきに悩まされている。
本稿では,この問題に対処するための局所的な継続的トレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-05-26T12:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。