RANSAC Back to SOTA: A Two-stage Consensus Filtering for Real-time 3D Registration
- URL: http://arxiv.org/abs/2410.15682v1
- Date: Mon, 21 Oct 2024 06:46:49 GMT
- Title: RANSAC Back to SOTA: A Two-stage Consensus Filtering for Real-time 3D Registration
- Authors: Pengcheng Shi, Shaocheng Yan, Yilin Xiao, Xinyi Liu, Yongjun Zhang, Jiayuan Li,
- Abstract summary: Correspondence-based point cloud registration (PCR) plays a key role in robotics and computer vision.
We propose a two-stage consensus filtering (TCF) that elevates RANSAC to state-of-the-art (SOTA) speed and accuracy.
- Score: 15.81035895734261
- License:
- Abstract: Correspondence-based point cloud registration (PCR) plays a key role in robotics and computer vision. However, challenges like sensor noises, object occlusions, and descriptor limitations inevitably result in numerous outliers. RANSAC family is the most popular outlier removal solution. However, the requisite iterations escalate exponentially with the outlier ratio, rendering it far inferior to existing methods (SC2PCR [1], MAC [2], etc.) in terms of accuracy or speed. Thus, we propose a two-stage consensus filtering (TCF) that elevates RANSAC to state-of-the-art (SOTA) speed and accuracy. Firstly, one-point RANSAC obtains a consensus set based on length consistency. Subsequently, two-point RANSAC refines the set via angle consistency. Then, three-point RANSAC computes a coarse pose and removes outliers based on transformed correspondence's distances. Drawing on optimizations from one-point and two-point RANSAC, three-point RANSAC requires only a few iterations. Eventually, an iterative reweighted least squares (IRLS) is applied to yield the optimal pose. Experiments on the large-scale KITTI and ETH datasets demonstrate our method achieves up to three-orders-of-magnitude speedup compared to MAC while maintaining registration accuracy and recall. Our code is available at https://github.com/ShiPC-AI/TCF.
Related papers
- NeFSAC: Neurally Filtered Minimal Samples [90.55214606751453]
NeFSAC is an efficient algorithm for neural filtering of motion-inconsistent and poorly-conditioned minimal samples.
NeFSAC can be plugged into any existing RANSAC-based pipeline.
We tested NeFSAC on more than 100k image pairs from three publicly available real-world datasets.
arXiv Detail & Related papers (2022-07-16T08:02:05Z) - Rapid Person Re-Identification via Sub-space Consistency Regularization [51.76876061721556]
Person Re-Identification (ReID) matches pedestrians across disjoint cameras.
Existing ReID methods adopting real-value feature descriptors have achieved high accuracy, but they are low in efficiency due to the slow Euclidean distance computation.
We propose a novel Sub-space Consistency Regularization (SCR) algorithm that can speed up the ReID procedure by 0.25$ times.
arXiv Detail & Related papers (2022-07-13T02:44:05Z) - Stress-Testing LiDAR Registration [52.24383388306149]
We propose a method for selecting balanced registration sets, which are challenging sets of frame-pairs from LiDAR datasets.
Perhaps unexpectedly, we find that the fastest and simultaneously most accurate approach is a version of advanced RANSAC.
arXiv Detail & Related papers (2022-04-16T05:10:55Z) - SC^2-PCR: A Second Order Spatial Compatibility for Efficient and Robust
Point Cloud Registration [32.87420625579577]
We propose a second order spatial compatibility (SC2) measure to compute the similarity between correspondences.
Based on this measure, our registration pipeline employs a global spectral technique to find some reliable seeds from the initial correspondences.
Our method can guarantee to find a certain number of outlier-free consensus sets using fewer samplings.
arXiv Detail & Related papers (2022-03-28T02:41:28Z) - Geometric Transformer for Fast and Robust Point Cloud Registration [53.10568889775553]
We study the problem of extracting accurate correspondences for point cloud registration.
Recent keypoint-free methods bypass the detection of repeatable keypoints which is difficult in low-overlap scenarios.
We propose Geometric Transformer to learn geometric feature for robust superpoint matching.
arXiv Detail & Related papers (2022-02-14T13:26:09Z) - Space-Partitioning RANSAC [30.255457622022487]
A new algorithm is proposed to accelerate RANSAC model quality calculations.
The method is based on partitioning the joint correspondence space, e.g., 2D-2D point correspondences, into a pair of regular grids.
It reduces the RANSAC run-time by 41% with provably no deterioration in the accuracy.
arXiv Detail & Related papers (2021-11-24T10:10:04Z) - Practical, Fast and Robust Point Cloud Registration for 3D Scene
Stitching and Object Localization [6.8858952804978335]
3D point cloud registration is a fundamental problem in remote sensing, photogrammetry, robotics and geometric computer vision.
We propose a novel, fast and highly robust solution, named VOCRA, for the point cloud registration problem with extreme outlier rates.
We show that our solver VOCRA is robust against over 99% outliers and more time-efficient than the state-of-the-art competitors.
arXiv Detail & Related papers (2021-11-08T01:49:04Z) - DANIEL: A Fast and Robust Consensus Maximization Method for Point Cloud
Registration with High Outlier Ratios [6.8858952804978335]
Correspondence-based point cloud registration is a cornerstone in computer vision, robotics perception, photogrammetry and remote sensing.
Current 3D keypoint matching techniques are very prone to yield outliers, probably even in very large numbers.
We present a novel time-efficient RANSAC-type consensus solver, named DANIEL, for robust registration.
arXiv Detail & Related papers (2021-10-11T08:27:00Z) - VSAC: Efficient and Accurate Estimator for H and F [68.65610177368617]
VSAC is a RANSAC-type robust estimator with a number of novelties.
It is significantly faster than all its predecessors and runs on average in 1-2 ms, on a CPU.
It is two orders of magnitude faster and yet as precise as MAGSAC++, the currently most accurate estimator of two-view geometry.
arXiv Detail & Related papers (2021-06-18T17:04:57Z) - Canny-VO: Visual Odometry with RGB-D Cameras based on Geometric 3D-2D
Edge Alignment [85.32080531133799]
This paper reviews the classical problem of free-form curve registration and applies it to an efficient RGBD visual odometry system called Canny-VO.
Two replacements for the distance transformation commonly used in edge registration are proposed: Approximate Nearest Neighbour Fields and Oriented Nearest Neighbour Fields.
3D2D edge alignment benefits from these alternative formulations in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2020-12-15T11:42:17Z) - TEASER: Fast and Certifiable Point Cloud Registration [30.19476775410544]
First fast and robust certifiable algorithm for the registration of 3D points in the presence of large amounts of outliers.
Second fast and robust certifiable translation, named TEASER++, uses graduated non-componentity to solve a large subproblem.
arXiv Detail & Related papers (2020-01-21T18:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.