Offline reinforcement learning for job-shop scheduling problems
- URL: http://arxiv.org/abs/2410.15714v2
- Date: Mon, 25 Nov 2024 10:36:34 GMT
- Title: Offline reinforcement learning for job-shop scheduling problems
- Authors: Imanol Echeverria, Maialen Murua, Roberto Santana,
- Abstract summary: This paper introduces a novel offline RL method designed for optimization problems with complex constraints.
Our approach encodes actions in edge attributes and balances expected rewards with the imitation of expert solutions.
We demonstrate the effectiveness of this method on job-shop scheduling and flexible job-shop scheduling benchmarks.
- Score: 1.3927943269211593
- License:
- Abstract: Recent advances in deep learning have shown significant potential for solving combinatorial optimization problems in real-time. Unlike traditional methods, deep learning can generate high-quality solutions efficiently, which is crucial for applications like routing and scheduling. However, existing approaches like deep reinforcement learning (RL) and behavioral cloning have notable limitations, with deep RL suffering from slow learning and behavioral cloning relying solely on expert actions, which can lead to generalization issues and neglect of the optimization objective. This paper introduces a novel offline RL method designed for combinatorial optimization problems with complex constraints, where the state is represented as a heterogeneous graph and the action space is variable. Our approach encodes actions in edge attributes and balances expected rewards with the imitation of expert solutions. We demonstrate the effectiveness of this method on job-shop scheduling and flexible job-shop scheduling benchmarks, achieving superior performance compared to state-of-the-art techniques.
Related papers
- Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Learning-enabled Flexible Job-shop Scheduling for Scalable Smart
Manufacturing [11.509669981978874]
In smart manufacturing systems, flexible job-shop scheduling with transportation constraints is essential to optimize solutions for maximizing productivity.
Recent developments in deep reinforcement learning (DRL)-based methods for FJSPT have encountered a scale generalization challenge.
We introduce a novel graph-based DRL method, named the Heterogeneous Graph Scheduler (HGS)
arXiv Detail & Related papers (2024-02-14T06:49:23Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - On Multi-objective Policy Optimization as a Tool for Reinforcement
Learning: Case Studies in Offline RL and Finetuning [24.264618706734012]
We show how to develop novel and more effective deep reinforcement learning algorithms.
We focus on offline RL and finetuning as case studies.
We introduce Distillation of a Mixture of Experts (DiME)
We demonstrate that for offline RL, DiME leads to a simple new algorithm that outperforms state-of-the-art.
arXiv Detail & Related papers (2021-06-15T14:59:14Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Reversible Action Design for Combinatorial Optimization with
Reinforcement Learning [35.50454156611722]
Reinforcement learning (RL) has recently emerged as a new framework to tackle these problems.
We propose a general RL framework that not only exhibits state-of-the-art empirical performance but also generalizes to a variety class of COPs.
arXiv Detail & Related papers (2021-02-14T18:05:42Z) - Geometric Deep Reinforcement Learning for Dynamic DAG Scheduling [8.14784681248878]
In this paper, we propose a reinforcement learning approach to solve a realistic scheduling problem.
We apply it to an algorithm commonly executed in the high performance computing community, the Cholesky factorization.
Our algorithm uses graph neural networks in combination with an actor-critic algorithm (A2C) to build an adaptive representation of the problem on the fly.
arXiv Detail & Related papers (2020-11-09T10:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.