Learning-enabled Flexible Job-shop Scheduling for Scalable Smart
Manufacturing
- URL: http://arxiv.org/abs/2402.08979v1
- Date: Wed, 14 Feb 2024 06:49:23 GMT
- Title: Learning-enabled Flexible Job-shop Scheduling for Scalable Smart
Manufacturing
- Authors: Sihoon Moon, Sanghoon Lee, and Kyung-Joon Park
- Abstract summary: In smart manufacturing systems, flexible job-shop scheduling with transportation constraints is essential to optimize solutions for maximizing productivity.
Recent developments in deep reinforcement learning (DRL)-based methods for FJSPT have encountered a scale generalization challenge.
We introduce a novel graph-based DRL method, named the Heterogeneous Graph Scheduler (HGS)
- Score: 11.509669981978874
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In smart manufacturing systems (SMSs), flexible job-shop scheduling with
transportation constraints (FJSPT) is essential to optimize solutions for
maximizing productivity, considering production flexibility based on automated
guided vehicles (AGVs). Recent developments in deep reinforcement learning
(DRL)-based methods for FJSPT have encountered a scale generalization
challenge. These methods underperform when applied to environment at scales
different from their training set, resulting in low-quality solutions. To
address this, we introduce a novel graph-based DRL method, named the
Heterogeneous Graph Scheduler (HGS). Our method leverages locally extracted
relational knowledge among operations, machines, and vehicle nodes for
scheduling, with a graph-structured decision-making framework that reduces
encoding complexity and enhances scale generalization. Our performance
evaluation, conducted with benchmark datasets, reveals that the proposed method
outperforms traditional dispatching rules, meta-heuristics, and existing
DRL-based approaches in terms of makespan performance, even on large-scale
instances that have not been experienced during training.
Related papers
- Offline reinforcement learning for job-shop scheduling problems [1.3927943269211593]
This paper introduces a novel offline RL method designed for optimization problems with complex constraints.
Our approach encodes actions in edge attributes and balances expected rewards with the imitation of expert solutions.
We demonstrate the effectiveness of this method on job-shop scheduling and flexible job-shop scheduling benchmarks.
arXiv Detail & Related papers (2024-10-21T07:33:42Z) - Solving Integrated Process Planning and Scheduling Problem via Graph Neural Network Based Deep Reinforcement Learning [8.497746222687983]
In this paper, we propose a novel end-to-end Deep Reinforcement Learning (DRL) method for IPPS problem.
We model the IPPS problem as a Markov Decision Process (MDP) and employ a Heterogeneous Graph Neural Network (GNN) to capture the complex relationships among operations, machines, and jobs.
Experimental results show that, compared to traditional methods, our approach significantly improves solution efficiency and quality in large-scale IPPS instances.
arXiv Detail & Related papers (2024-09-02T06:18:30Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Deep reinforcement learning for machine scheduling: Methodology, the
state-of-the-art, and future directions [2.4541568670428915]
Machine scheduling aims to optimize job assignments to machines while adhering to manufacturing rules and job specifications.
Deep Reinforcement Learning (DRL), a key component of artificial general intelligence, has shown promise in various domains like gaming and robotics.
This paper offers a comprehensive review and comparison of DRL-based approaches, highlighting their methodology, applications, advantages, and limitations.
arXiv Detail & Related papers (2023-10-04T22:45:09Z) - Flexible Job Shop Scheduling via Dual Attention Network Based
Reinforcement Learning [73.19312285906891]
In flexible job shop scheduling problem (FJSP), operations can be processed on multiple machines, leading to intricate relationships between operations and machines.
Recent works have employed deep reinforcement learning (DRL) to learn priority dispatching rules (PDRs) for solving FJSP.
This paper presents a novel end-to-end learning framework that weds the merits of self-attention models for deep feature extraction and DRL for scalable decision-making.
arXiv Detail & Related papers (2023-05-09T01:35:48Z) - A Memetic Algorithm with Reinforcement Learning for Sociotechnical
Production Scheduling [0.0]
This article presents a memetic algorithm with applying deep reinforcement learning (DRL) to flexible job shop scheduling problems (DRC-FJSSP)
From research projects in industry, we recognize the need to consider flexible machines, flexible human workers, worker capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material manufacturing, sequence-dependent setup times and (partially) automated tasks in human-machine-collaboration.
arXiv Detail & Related papers (2022-12-21T11:24:32Z) - Deep Reinforcement Learning Guided Improvement Heuristic for Job Shop
Scheduling [30.45126420996238]
This paper proposes a novel DRL-guided improvement for solving JSSP, where graph representation is employed to encode complete solutions.
We design a Graph Neural-Network-based representation scheme, consisting of two modules to effectively capture the information of dynamic topology and different types of nodes in graphs encountered during the improvement process.
We prove that our method scales linearly with problem size. Experiments on classic benchmarks show that the improvement policy learned by our method outperforms state-of-the-art DRL-based methods by a large margin.
arXiv Detail & Related papers (2022-11-20T10:20:13Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Adaptive Serverless Learning [114.36410688552579]
We propose a novel adaptive decentralized training approach, which can compute the learning rate from data dynamically.
Our theoretical results reveal that the proposed algorithm can achieve linear speedup with respect to the number of workers.
To reduce the communication-efficient overhead, we further propose a communication-efficient adaptive decentralized training approach.
arXiv Detail & Related papers (2020-08-24T13:23:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.