論文の概要: Object-Centric Temporal Consistency via Conditional Autoregressive Inductive Biases
- arxiv url: http://arxiv.org/abs/2410.15728v1
- Date: Mon, 21 Oct 2024 07:44:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:58.312314
- Title: Object-Centric Temporal Consistency via Conditional Autoregressive Inductive Biases
- Title(参考訳): 条件付き自己回帰誘導バイアスによる物体中心の時間一貫性
- Authors: Cristian Meo, Akihiro Nakano, Mircea Lică, Aniket Didolkar, Masahiro Suzuki, Anirudh Goyal, Mengmi Zhang, Justin Dauwels, Yutaka Matsuo, Yoshua Bengio,
- Abstract要約: Conditional Autoregressive Slot Attention (CA-SA) は、ビデオ中心の視覚タスクにおいて抽出されたオブジェクト中心の表現の時間的一貫性を高めるフレームワークである。
本稿では,提案手法が下流タスクのベースラインよりも優れていることを示す定性的,定量的な結果を示す。
- 参考スコア(独自算出の注目度): 69.46487306858789
- License:
- Abstract: Unsupervised object-centric learning from videos is a promising approach towards learning compositional representations that can be applied to various downstream tasks, such as prediction and reasoning. Recently, it was shown that pretrained Vision Transformers (ViTs) can be useful to learn object-centric representations on real-world video datasets. However, while these approaches succeed at extracting objects from the scenes, the slot-based representations fail to maintain temporal consistency across consecutive frames in a video, i.e. the mapping of objects to slots changes across the video. To address this, we introduce Conditional Autoregressive Slot Attention (CA-SA), a framework that enhances the temporal consistency of extracted object-centric representations in video-centric vision tasks. Leveraging an autoregressive prior network to condition representations on previous timesteps and a novel consistency loss function, CA-SA predicts future slot representations and imposes consistency across frames. We present qualitative and quantitative results showing that our proposed method outperforms the considered baselines on downstream tasks, such as video prediction and visual question-answering tasks.
- Abstract(参考訳): ビデオからの教師なしのオブジェクト指向学習は、予測や推論など、さまざまな下流タスクに適用可能な構成表現の学習への有望なアプローチである。
近年,ViT(Pretrained Vision Transformer)は,実世界のビデオデータセット上でオブジェクト中心の表現を学習するのに有用であることが示されている。
しかしながら、これらのアプローチはシーンからオブジェクトを抽出することに成功したが、スロットベースの表現はビデオ内の連続するフレーム間の時間的一貫性を維持することができず、つまり、ビデオ内のスロット間のオブジェクトのマッピングが変化する。
そこで我々は,映像中心の視覚タスクにおいて,抽出した対象中心の表現の時間的一貫性を高めるフレームワークであるConditional Autoregressive Slot Attention (CA-SA)を導入する。
自己回帰前のネットワークを以前のタイムステップの条件表現と新しい一貫性損失関数に活用することにより、CA-SAは将来のスロット表現を予測し、フレーム間の一貫性を課す。
提案手法は,映像予測や視覚質問応答タスクなどの下流タスクにおいて,検討されたベースラインよりも優れていることを示す質的,定量的な結果を示す。
関連論文リスト
- Helping Hands: An Object-Aware Ego-Centric Video Recognition Model [60.350851196619296]
オブジェクト認識デコーダを導入し、エゴ中心の動画におけるエゴ中心の表現の性能を向上させる。
このモデルは,エゴ認識ビデオモデルの代替として機能し,視覚テキストのグラウンド化による性能向上を図っている。
論文 参考訳(メタデータ) (2023-08-15T17:58:11Z) - Self-Supervised Video Representation Learning via Latent Time Navigation [12.721647696921865]
自己教師付きビデオ表現学習は、1つのビデオの異なる時間セグメント間の類似性を最大化することを目的としている。
微粒な動きを捉えるために、LTN(Latent Time Navigation)を提案する。
実験により,LTNによる映像表現の学習は,動作分類の性能を一貫して向上させることが示された。
論文 参考訳(メタデータ) (2023-05-10T20:06:17Z) - PreViTS: Contrastive Pretraining with Video Tracking Supervision [53.73237606312024]
PreViTSは、同じオブジェクトを含むクリップを選択するための教師なしSSLフレームワークである。
PreViTSはフレーム領域を空間的に制約し、モデルから学習し、意味のあるオブジェクトを見つけるように訓練する。
モーメントコントラスト(MoCo)エンコーダを,PreViTSを用いてVGG-SoundとKinetics-400データセットでトレーニングする。
論文 参考訳(メタデータ) (2021-12-01T19:49:57Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
自己制御学習(SRL)は、中間表現を連続的に制御し、現在のタイムスタンプのフレームにおける新しい情報を強調する表現を作り出すことを目的としている。
SRLは2つのエゴセントリックなビデオデータセットと2つの第三者のビデオデータセットにおいて、既存の最先端技術よりも大幅に優れています。
論文 参考訳(メタデータ) (2021-11-23T03:29:18Z) - Self-Supervision by Prediction for Object Discovery in Videos [62.87145010885044]
本稿では,この予測タスクを自己監督として利用し,画像シーケンス表現のための新しいオブジェクト中心モデルを構築する。
私たちのフレームワークは、手動アノテーションや事前トレーニングされたネットワークを使わずにトレーニングできます。
最初の実験では、提案されたパイプラインがオブジェクト中心のビデオ予測への有望なステップであることを確認した。
論文 参考訳(メタデータ) (2021-03-09T19:14:33Z) - Unsupervised Learning of Video Representations via Dense Trajectory
Clustering [86.45054867170795]
本稿では,ビデオにおける行動認識のための表現の教師なし学習の課題に対処する。
まず、このクラスの2つのトップパフォーマンス目標(インスタンス認識と局所集約)を適用することを提案する。
有望な性能を観察するが、定性的解析により、学習した表現が動きのパターンを捉えないことを示す。
論文 参考訳(メタデータ) (2020-06-28T22:23:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。