論文の概要: AutoTrain: No-code training for state-of-the-art models
- arxiv url: http://arxiv.org/abs/2410.15735v1
- Date: Mon, 21 Oct 2024 07:53:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:12:41.725009
- Title: AutoTrain: No-code training for state-of-the-art models
- Title(参考訳): AutoTrain: 最先端モデルのノーコードトレーニング
- Authors: Abhishek Thakur,
- Abstract要約: AutoTrain Advancedはオープンソースのライブラリで、カスタムデータセット上でモデルをトレーニングするためのベストプラクティスを提供する。
完全にローカルモードまたはクラウドマシンで使用することができ、Hugging Face Hubで共有される数万のモデルで動作する。
- 参考スコア(独自算出の注目度): 4.205730845577769
- License:
- Abstract: With the advancements in open-source models, training (or finetuning) models on custom datasets has become a crucial part of developing solutions which are tailored to specific industrial or open-source applications. Yet, there is no single tool which simplifies the process of training across different types of modalities or tasks. We introduce AutoTrain (aka AutoTrain Advanced) -- an open-source, no code tool/library which can be used to train (or finetune) models for different kinds of tasks such as: large language model (LLM) finetuning, text classification/regression, token classification, sequence-to-sequence task, finetuning of sentence transformers, visual language model (VLM) finetuning, image classification/regression and even classification and regression tasks on tabular data. AutoTrain Advanced is an open-source library providing best practices for training models on custom datasets. The library is available at https://github.com/huggingface/autotrain-advanced. AutoTrain can be used in fully local mode or on cloud machines and works with tens of thousands of models shared on Hugging Face Hub and their variations.
- Abstract(参考訳): オープンソースモデルの発展に伴い、カスタムデータセットのトレーニング(あるいは微調整)モデルは、特定の産業用またはオープンソースアプリケーションに適したソリューションの開発において重要な部分となっている。
しかし、さまざまなタイプのモダリティやタスクをまたいでトレーニングするプロセスを単純化するツールは、ひとつもない。
AutoTrain (別名AutoTrain Advanced) -- 大規模な言語モデル(LLM)ファインタニング、テキスト分類/レグレッション、トークン分類、シーケンス・ツー・シーケンスタスク、文変換器のファインタニング、ビジュアル言語モデル(VLM)ファインタニング、画像分類/レグレッション、さらには表データの分類/レグレッションタスクなど、さまざまなタスクのトレーニング(あるいは微調整)に使用可能な、オープンソースのコードツール/ライブラリなしのAutoTrain(AutoTrain Advanced)を紹介します。
AutoTrain Advancedはオープンソースのライブラリで、カスタムデータセット上でモデルをトレーニングするためのベストプラクティスを提供する。
ライブラリはhttps://github.com/huggingface/autotrain-advanced.comで入手できる。
AutoTrainは、完全にローカルモードまたはクラウドマシンで使用することができ、Hugging Face Hubとそのバリエーションで共有される数万のモデルで動作する。
関連論文リスト
- VQA Training Sets are Self-play Environments for Generating Few-shot Pools [2.556825820539693]
本稿では,タスクメトリクスを報酬として計算環境を構築するために,既存のトレーニングセットを直接利用できる手法を提案する。
提案手法は、ゼロショットプロンプトから始まり、トレーニングセット上のタスクメトリックを最大化する少数ショット例を選択することにより、反復的にそれらを洗練する。
我々の実験では、GeminiがScreenAIのようなより小型で特殊なモデルを使って、トレーニングセットのパフォーマンスを反復的に改善する方法を実証している。
論文 参考訳(メタデータ) (2024-05-30T07:38:58Z) - SortedNet: A Scalable and Generalized Framework for Training Modular Deep Neural Networks [30.069353400127046]
我々は、ディープニューラルネットワーク(DNN)の固有のモジュラリティを活用するためにSortedNetを提案する。
SortedNetは、メインモデルのトレーニングと同時にサブモデルのトレーニングを可能にする。
一度に160台のサブモデルを訓練でき、オリジナルのモデルの性能の少なくとも96%を達成できる。
論文 参考訳(メタデータ) (2023-09-01T05:12:25Z) - DINOv2: Learning Robust Visual Features without Supervision [75.42921276202522]
この研究は、既存の事前学習手法、特に自己教師付き手法が、多様なソースから十分なキュレートされたデータで訓練すれば、そのような特徴を生み出すことができることを示している。
技術的な貢献の多くは、大規模なトレーニングを加速し、安定化することを目的としています。
データの観点からは、自己組織化されていないデータではなく、専用で多様でキュレートされた画像データセットを構築するための自動パイプラインを提案する。
論文 参考訳(メタデータ) (2023-04-14T15:12:19Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
本稿では,大規模な微分モデルに対して有効かつ計算的に抽出可能なデータ属性法であるTRAK(Tracing with Randomly-trained After Kernel)を提案する。
論文 参考訳(メタデータ) (2023-03-24T17:56:22Z) - Mining Robust Default Configurations for Resource-constrained AutoML [18.326426020906215]
本稿では,オフラインのAutoMLを実行し,多様なタスクに対してマイニングを行うことにより,与えられたタスクに対するパフォーマンス設定を選択する新しい方法を提案する。
当社のアプローチは,既存のAutoMLプラットフォームを温める上で有効であることを示す。
論文 参考訳(メタデータ) (2022-02-20T23:08:04Z) - AutoFlow: Learning a Better Training Set for Optical Flow [62.40293188964933]
AutoFlowは、光学フローのトレーニングデータをレンダリングする手法である。
AutoFlowはPWC-NetとRAFTの両方の事前トレーニングにおいて最先端の精度を実現する。
論文 参考訳(メタデータ) (2021-04-29T17:55:23Z) - Ensemble Distillation for Robust Model Fusion in Federated Learning [72.61259487233214]
Federated Learning(FL)は、多くのデバイスが機械学習モデルを協調的にトレーニングする機械学習環境である。
現在のトレーニングスキームのほとんどでは、サーバモデルのパラメータと更新されたパラメータをクライアント側から平均化することで、中央モデルを洗練します。
本研究では,モデル融合のためのアンサンブル蒸留法を提案する。
論文 参考訳(メタデータ) (2020-06-12T14:49:47Z) - AutoFIS: Automatic Feature Interaction Selection in Factorization Models
for Click-Through Rate Prediction [75.16836697734995]
自動特徴相互作用選択(AutoFIS)と呼ばれる2段階のアルゴリズムを提案する。
AutoFISは、目標モデルを収束させるためにトレーニングするのと同等の計算コストで、因子化モデルに対する重要な特徴的相互作用を自動的に識別することができる。
AutoFISはHuawei App Storeレコメンデーションサービスのトレーニングプラットフォームにデプロイされている。
論文 参考訳(メタデータ) (2020-03-25T06:53:54Z) - AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data [120.2298620652828]
オープンソースのAutoMLフレームワークであるAutoGluon-Tabularを紹介します。
KaggleとOpenML AutoML Benchmarkの50の分類および回帰タスクからなるスイートのテストによると、AutoGluonはより速く、より堅牢で、はるかに正確である。
論文 参考訳(メタデータ) (2020-03-13T23:10:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。