Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation
- URL: http://arxiv.org/abs/2410.15748v1
- Date: Mon, 21 Oct 2024 08:04:21 GMT
- Title: Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation
- Authors: Shaonan Wu, Shuai Lu, Yeyun Gong, Nan Duan, Ping Wei,
- Abstract summary: This work proposes Alchemy, a framework for data synthesis that constructs formal theorems through symbolic mutation.
For each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it.
As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M.
- Score: 71.32761934724867
- License:
- Abstract: Formal proofs are challenging to write even for experienced experts. Recent progress in Neural Theorem Proving (NTP) shows promise in expediting this process. However, the formal corpora available on the Internet are limited compared to the general text, posing a significant data scarcity challenge for NTP. To address this issue, this work proposes Alchemy, a general framework for data synthesis that constructs formal theorems through symbolic mutation. Specifically, for each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it. Subsequently, we mutate the candidate theorem by replacing the corresponding term in the statement with its equivalent form or antecedent. As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M. Furthermore, we perform continual pretraining and supervised finetuning on this augmented corpus for large language models. Experimental results demonstrate the effectiveness of our approach, achieving a 5% absolute performance improvement on Leandojo benchmark. Additionally, our synthetic data achieve a 2.5% absolute performance gain on the out-of-distribution miniF2F benchmark. To provide further insights, we conduct a comprehensive analysis of synthetic data composition and the training paradigm, offering valuable guidance for developing a strong theorem prover.
Related papers
- Formal Theorem Proving by Rewarding LLMs to Decompose Proofs Hierarchically [29.908878832382523]
This paper focuses on improving LLMs' ability to write proofs in formal languages that permit automated proof verification/evaluation.
We work in a more natural setup where the lemmas that are directly relevant to the theorem are not given to the theorem prover at test time.
We design an RL-based training algorithm that encourages the model to decompose a theorem into lemmas, prove the lemmas, and then prove the theorem by using the lemmas.
arXiv Detail & Related papers (2024-11-04T05:57:40Z) - SubgoalXL: Subgoal-based Expert Learning for Theorem Proving [37.115856591703974]
SubgoalXL is a novel approach that synergizes subgoal-based proofs with expert learning to enhance formal theorem proving.
SubgoalXL achieves a new state-of-the-art performance of 56.1% in Isabelle on the standard miniF2F dataset.
arXiv Detail & Related papers (2024-08-20T20:10:53Z) - Proving Theorems Recursively [80.42431358105482]
We propose POETRY, which proves theorems in a level-by-level manner.
Unlike previous step-by-step methods, POETRY searches for a sketch of the proof at each level.
We observe a substantial increase in the maximum proof length found by POETRY, from 10 to 26.
arXiv Detail & Related papers (2024-05-23T10:35:08Z) - DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data [65.5290035371111]
We introduce an approach to generate extensive Lean 4 proof data derived from high-school and undergraduate-level mathematical competition problems.
We fine-tune the DeepSeekMath 7B model on this synthetic dataset, which comprises 8 million formal statements with proofs.
Our model successfully proved 5 out of 148 problems in the Lean 4 Formalized International Mathematical Olympiad (FIMO) benchmark, while GPT-4 failed to prove any.
arXiv Detail & Related papers (2024-05-23T09:03:42Z) - MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data [85.50740598523818]
MUSTARD is a framework that masters uniform synthesis of theorem and proof data of high quality and diversity.
We present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points.
We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data.
arXiv Detail & Related papers (2024-02-14T05:57:58Z) - Enhancing Neural Theorem Proving through Data Augmentation and Dynamic
Sampling Method [1.8130068086063336]
We introduce DS-Prover, a novel dynamic sampling method for theorem proving.
We augment the training dataset by decomposing simplification and rewrite tactics with multiple premises into tactics with single premises.
We achieve a state-of-the-art performance (Pass@1) of 14.2% on the ProofNet dataset and a performance of 29.8% on MiniF2F.
arXiv Detail & Related papers (2023-12-20T09:55:21Z) - Training a First-Order Theorem Prover from Synthetic Data [50.23600875138756]
A major challenge in applying machine learning to automated theorem proving is the scarcity of training data.
We propose an approach that relies on training purely with synthetically generated theorems, without any human data aside from axioms.
Our neural prover outperforms the state-of-the-art E-prover on this synthetic data in both time and search steps.
arXiv Detail & Related papers (2021-03-05T17:01:34Z) - Proof Artifact Co-training for Theorem Proving with Language Models [4.934817254755007]
PACT (bf Proof bf Artifact bf Co-bf Training) is a general methodology for extracting self-supervised data from kernel-level proof terms for co-training.
We instrument Lean with a neural theorem prover driven by a Transformer language model and show that PACT improves theorem proving success rate on a held-out suite of test theorems from 32% to 48%.
arXiv Detail & Related papers (2021-02-11T18:59:24Z) - PRover: Proof Generation for Interpretable Reasoning over Rules [81.40404921232192]
We propose a transformer-based model that answers binary questions over rule-bases and generates the corresponding proofs.
Our model learns to predict nodes and edges corresponding to proof graphs in an efficient constrained training paradigm.
We conduct experiments on synthetic, hand-authored, and human-paraphrased rule-bases to show promising results for QA and proof generation.
arXiv Detail & Related papers (2020-10-06T15:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.