DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data
- URL: http://arxiv.org/abs/2405.14333v1
- Date: Thu, 23 May 2024 09:03:42 GMT
- Title: DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data
- Authors: Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, Xiaodan Liang,
- Abstract summary: We introduce an approach to generate extensive Lean 4 proof data derived from high-school and undergraduate-level mathematical competition problems.
We fine-tune the DeepSeekMath 7B model on this synthetic dataset, which comprises 8 million formal statements with proofs.
Our model successfully proved 5 out of 148 problems in the Lean 4 Formalized International Mathematical Olympiad (FIMO) benchmark, while GPT-4 failed to prove any.
- Score: 65.5290035371111
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Proof assistants like Lean have revolutionized mathematical proof verification, ensuring high accuracy and reliability. Although large language models (LLMs) show promise in mathematical reasoning, their advancement in formal theorem proving is hindered by a lack of training data. To address this issue, we introduce an approach to generate extensive Lean 4 proof data derived from high-school and undergraduate-level mathematical competition problems. This approach involves translating natural language problems into formal statements, filtering out low-quality statements, and generating proofs to create synthetic data. After fine-tuning the DeepSeekMath 7B model on this synthetic dataset, which comprises 8 million formal statements with proofs, our model achieved whole-proof generation accuracies of 46.3% with 64 samples and 52% cumulatively on the Lean 4 miniF2F test, surpassing the baseline GPT-4 at 23.0% with 64 samples and a tree search reinforcement learning method at 41.0%. Additionally, our model successfully proved 5 out of 148 problems in the Lean 4 Formalized International Mathematical Olympiad (FIMO) benchmark, while GPT-4 failed to prove any. These results demonstrate the potential of leveraging large-scale synthetic data to enhance theorem-proving capabilities in LLMs. Both the synthetic dataset and the model will be made available to facilitate further research in this promising field.
Related papers
- Formal Theorem Proving by Rewarding LLMs to Decompose Proofs Hierarchically [29.908878832382523]
This paper focuses on improving LLMs' ability to write proofs in formal languages that permit automated proof verification/evaluation.
We work in a more natural setup where the lemmas that are directly relevant to the theorem are not given to the theorem prover at test time.
We design an RL-based training algorithm that encourages the model to decompose a theorem into lemmas, prove the lemmas, and then prove the theorem by using the lemmas.
arXiv Detail & Related papers (2024-11-04T05:57:40Z) - Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation [71.32761934724867]
This work proposes Alchemy, a framework for data synthesis that constructs formal theorems through symbolic mutation.
For each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it.
As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M.
arXiv Detail & Related papers (2024-10-21T08:04:21Z) - Proof Automation with Large Language Models [6.587933406842906]
Large Language Models (LLMs) have shown promise in automatically generating informal proofs in natural language.
We propose PALM, a novel generate-then-repair approach that first prompts an LLM to generate an initial proof and then leverages targeted symbolic methods to iteratively repair low-level problems.
Our results show that PALM significantly outperforms other state-of-the-art approaches, successfully proving 76.6% to 180.4% more theorems.
arXiv Detail & Related papers (2024-09-22T00:19:27Z) - LEAN-GitHub: Compiling GitHub LEAN repositories for a versatile LEAN prover [56.34998574538897]
We propose LEAN-GitHub, a dataset consisting of large-scale formal data extracted from Lean 4 repositories on GitHub.
Our model achieved accuracies of 48.8% with a single pass and 54.5% with 64 passes on the Lean 4 miniF2F test, surpassing state-of-the-art method at 52%.
arXiv Detail & Related papers (2024-07-24T12:28:03Z) - TheoremLlama: Transforming General-Purpose LLMs into Lean4 Experts [26.98890165420689]
TheoremLlama is an end-to-end framework that trains a general-purpose Lean4 expert.
Our framework achieves cumulative accuracies of 36.48% and 33.61% on MiniF2F-Valid and Test datasets respectively.
arXiv Detail & Related papers (2024-07-03T15:36:18Z) - Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning [110.80663974060624]
Key-Point-Driven Data Synthesis (KPDDS) is a novel data synthesis framework that synthesizes question-answer pairs.
KPDDS ensures the generation of novel questions with rigorous quality control and substantial scalability.
We present KPMath, an extensive synthetic dataset tailored for mathematical reasoning, comprising over 800K question-answer pairs.
arXiv Detail & Related papers (2024-03-04T18:58:30Z) - MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data [85.50740598523818]
MUSTARD is a framework that masters uniform synthesis of theorem and proof data of high quality and diversity.
We present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points.
We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data.
arXiv Detail & Related papers (2024-02-14T05:57:58Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.