論文の概要: DeepIcon: A Hierarchical Network for Layer-wise Icon Vectorization
- arxiv url: http://arxiv.org/abs/2410.15760v1
- Date: Mon, 21 Oct 2024 08:20:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:20:32.886034
- Title: DeepIcon: A Hierarchical Network for Layer-wise Icon Vectorization
- Title(参考訳): DeepIcon:レイヤワイドIconベクタライゼーションのための階層型ネットワーク
- Authors: Qi Bing, Chaoyi Zhang, Weidong Cai,
- Abstract要約: 近年,イメージをベクトル形式に変換する学習ベース手法では,不完全形状,冗長な経路予測,オリジナルコンテンツのセマンティクスの保存における精度の欠如が頻発している。
本稿では,画像入力に基づいて可変長アイコングラフを生成する階層型画像ベクトル化ネットワークDeepIconを提案する。
- 参考スコア(独自算出の注目度): 12.82009632507056
- License:
- Abstract: In contrast to the well-established technique of rasterization, vectorization of images poses a significant challenge in the field of computer graphics. Recent learning-based methods for converting raster images to vector formats frequently suffer from incomplete shapes, redundant path prediction, and a lack of accuracy in preserving the semantics of the original content. These shortcomings severely hinder the utility of these methods for further editing and manipulation of images. To address these challenges, we present DeepIcon, a novel hierarchical image vectorization network specifically tailored for generating variable-length icon vector graphics based on the raster image input. Our experimental results indicate that DeepIcon can efficiently produce Scalable Vector Graphics (SVGs) directly from raster images, bypassing the need for a differentiable rasterizer while also demonstrating a profound understanding of the image contents.
- Abstract(参考訳): ラスタ化の確立した技術とは対照的に、画像のベクトル化はコンピュータグラフィックスの分野において重要な課題である。
近年,ラスタ画像をベクトル形式に変換する学習手法は,不完全な形状,冗長な経路予測,オリジナルコンテンツのセマンティクスの保存における精度の欠如に悩まされている。
これらの欠点は、画像のさらなる編集と操作にこれらの手法が役立つことを著しく妨げている。
これらの課題に対処するために,ラスタ画像入力に基づいて可変長のアイコンベクトルグラフを生成するのに適した,新しい階層型画像ベクトル化ネットワークであるDeepIconを提案する。
実験結果から,DepIcon はラスタ画像から直接,ラスタ画像からスケーラブルベクトルグラフ(SVG)を効率よく生成できることが示唆された。
関連論文リスト
- Segmentation-guided Layer-wise Image Vectorization with Gradient Fills [6.037332707968933]
そこで本稿では,画像を勾配を埋め込んだ簡潔なベクトルグラフに変換するためのセグメンテーション誘導ベクトル化フレームワークを提案する。
組込み勾配認識セグメンテーションの指導により, 段階的に勾配を埋め込んだB'ezierパスを出力に付加する。
論文 参考訳(メタデータ) (2024-08-28T12:08:25Z) - SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis [66.44553285020066]
SuperSVGは、高速かつ高精度な画像ベクトル化を実現するスーパーピクセルベースのベクトル化モデルである。
本稿では,2段階の自己学習フレームワークを提案する。そこでは,粗い段階モデルを用いて主構造を再構築し,細部を充実させるために改良段階モデルを用いる。
再現精度と推定時間の観点から, 最先端手法と比較して, 提案手法の優れた性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-06-14T07:43:23Z) - StrokeNUWA: Tokenizing Strokes for Vector Graphic Synthesis [112.25071764647683]
StrokeNUWAはベクターグラフィックスにおけるより良い視覚表現'ストロークトークン'を探求する先駆的な研究である。
ストロークトークンを備えたStrokeNUWAは、従来のLCMベースの最適化ベースのメソッドを大幅に上回ることができる。
StrokeNUWAは、SVGコード圧縮比が6.9%の従来の手法よりも94倍のスピードアップを達成している。
論文 参考訳(メタデータ) (2024-01-30T15:20:26Z) - Text-Guided Vector Graphics Customization [31.41266632288932]
テキストのプロンプトに基づいて高品質なベクトルグラフィックスを生成する新しいパイプラインを提案する。
提案手法は,大規模な事前学習されたテキスト・ツー・イメージ・モデルの能力を利用する。
我々は,ベクトルレベル,画像レベル,テキストレベルの観点から,複数の指標を用いて評価を行った。
論文 参考訳(メタデータ) (2023-09-21T17:59:01Z) - VectorFusion: Text-to-SVG by Abstracting Pixel-Based Diffusion Models [82.93345261434943]
画像の画素表現に基づいて訓練されたテキスト条件付き拡散モデルを用いて,SVG-exportable vector graphicsを生成する。
近年のテキスト・ツー・3D研究に触発されて,Score Distillation Smpling を用いたキャプションと整合したSVGを学習した。
実験では、以前の作品よりも品質が向上し、ピクセルアートやスケッチを含む様々なスタイルが示されている。
論文 参考訳(メタデータ) (2022-11-21T10:04:27Z) - Towards Layer-wise Image Vectorization [57.26058135389497]
画像をSVGに変換し,画像トポロジを同時に維持するためのレイヤワイズ画像ベクトル化(LIVE)を提案する。
Liveは、人間の視点にセマンティックに整合した階層構造を持つコンパクトなフォームを生成する。
Liveは、デザイナの両方のために編集可能なSVGを起動し、他のアプリケーションで使用することができる。
論文 参考訳(メタデータ) (2022-06-09T17:55:02Z) - SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [95.45728042499836]
マスクレス局所画像操作という,スケッチに基づく画像操作の新しいパラダイムを提案する。
本モデルでは,対象の修正領域を自動的に予測し,構造型ベクトルにエンコードする。
ジェネレータは、スタイルベクトルとスケッチに基づいて、新しいイメージコンテンツを合成する。
論文 参考訳(メタデータ) (2021-11-30T02:42:31Z) - DeepMorph: A System for Hiding Bitstrings in Morphable Vector Drawings [0.0]
DeepMorphはベクトル描画のための情報埋め込み技術である。
本手法は描画プリミティブを摂動することで画像にビットストリングを埋め込む。
本手法は,印刷図面の実際の画像からビットストリングを確実に回収することを示す。
論文 参考訳(メタデータ) (2020-11-19T11:55:39Z) - Semantic Image Manipulation Using Scene Graphs [105.03614132953285]
本稿では,星座変更や画像編集を直接監督する必要のないシーングラフネットワークを提案する。
これにより、追加のアノテーションを使わずに、既存の実世界のデータセットからシステムをトレーニングすることができる。
論文 参考訳(メタデータ) (2020-04-07T20:02:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。