論文の概要: Learning-to-Defer for Extractive Question Answering
- arxiv url: http://arxiv.org/abs/2410.15761v1
- Date: Mon, 21 Oct 2024 08:21:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:22:31.564011
- Title: Learning-to-Defer for Extractive Question Answering
- Title(参考訳): 抽出的質問応答のための学習から判断へ
- Authors: Montreuil Yannis, Carlier Axel, Ng Lai Xing, Ooi Wei Tsang,
- Abstract要約: 質問応答の文脈で言語モデルを再訓練することなく、人間の専門家や大規模モデルへの選択的推論を可能にすることにより、意思決定を強化する2段階の学習・判断機構を適応的に導入する。
その結果,最小限のクエリを遅延させることで,計算効率を保ちながら,より大規模なクエリに匹敵する性能を実現することができた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Pre-trained language models have profoundly impacted the field of extractive question-answering, leveraging large-scale textual corpora to enhance contextual language understanding. Despite their success, these models struggle in complex scenarios that demand nuanced interpretation or inferential reasoning beyond immediate textual cues. Furthermore, their size poses deployment challenges on resource-constrained devices. Addressing these limitations, we introduce an adapted two-stage Learning-to-Defer mechanism that enhances decision-making by enabling selective deference to human experts or larger models without retraining language models in the context of question-answering. This approach not only maintains computational efficiency but also significantly improves model reliability and accuracy in ambiguous contexts. We establish the theoretical soundness of our methodology by proving Bayes and $(\mathcal{H}, \mathcal{R})$--consistency of our surrogate loss function, guaranteeing the optimality of the final solution. Empirical evaluations on the SQuADv2 dataset illustrate performance gains from integrating human expertise and leveraging larger models. Our results further demonstrate that deferring a minimal number of queries allows the smaller model to achieve performance comparable to their larger counterparts while preserving computing efficiency, thus broadening the applicability of pre-trained language models in diverse operational environments.
- Abstract(参考訳): 事前学習された言語モデルは、大規模テキストコーパスを活用して文脈言語理解を強化することで、抽出的質問応答の分野に大きな影響を与えている。
彼らの成功にもかかわらず、これらのモデルは、直近のテキストの手がかりを超えて、ニュアンスな解釈や推論を必要とする複雑なシナリオに苦しむ。
さらに、そのサイズはリソース制限されたデバイスへのデプロイメント上の課題を生じさせる。
これらの制約に対処するため、質問応答の文脈において言語モデルを再訓練することなく、人間の専門家や大規模モデルに対する選択的推論を可能にすることにより、意思決定を強化する2段階の学習・判断機構を導入している。
このアプローチは計算効率を維持するだけでなく、曖昧な文脈におけるモデルの信頼性と精度を大幅に向上させる。
ベイズと$(\mathcal{H}, \mathcal{R})$-一貫性を証明し、最終的な解の最適性を保証することによって、方法論の理論的健全性を確立する。
SQuADv2データセットの実証的な評価は、人間の専門知識の統合とより大きなモデルの利用によるパフォーマンスの向上を示している。
さらに,最小限のクエリを遅延させることで,計算効率を保ちながら,より大規模なクエリに匹敵する性能を実現し,様々な運用環境における事前学習言語モデルの適用性を高めることを実証した。
関連論文リスト
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - Beyond Accuracy Optimization: Computer Vision Losses for Large Language Model Fine-Tuning [9.507070656654632]
大きな言語モデル(LLM)は、様々なタスクで素晴らしいパフォーマンスを示しています。
現在のトレーニングアプローチでは、標準的なクロスエントロピー損失と、広範なデータ、人間のフィードバック、あるいはパフォーマンス向上のためのアドホックメソッドを組み合わせる。
本研究では,自然言語生成におけるセマンティックセグメンテーションの損失関数を用いた,汎用的で実用的でスケーラブルなソリューションの構築について検討する。
論文 参考訳(メタデータ) (2024-09-20T16:46:17Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
本研究では,検索強化言語モデルにおける検索情報圧縮のための2段階一貫性学習手法を提案する。
提案手法は複数のデータセットにまたがって実験的に検証され,質問応答タスクの精度と効率が顕著に向上したことを示す。
論文 参考訳(メタデータ) (2024-06-04T12:43:23Z) - Improving Instruction Following in Language Models through Proxy-Based Uncertainty Estimation [12.921225188504643]
本稿では,ペア応答の品質に対するロバストな不確実性推定を導入した不確実性認識リワードモデル(URM)を提案する。
実験結果から,提案したプロキシを言語モデルトレーニングに組み込むことによる大きなメリットが示された。
論文 参考訳(メタデータ) (2024-05-10T12:14:11Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Modeling Boundedly Rational Agents with Latent Inference Budgets [56.24971011281947]
エージェントの計算制約を明示的にモデル化する潜在推論予算モデル(L-IBM)を導入する。
L-IBMは、最適なアクターの多様な集団のデータを使ってエージェントモデルを学ぶことができる。
我々は,L-IBMが不確実性の下での意思決定のボルツマンモデルに適合しているか,あるいは上回っていることを示す。
論文 参考訳(メタデータ) (2023-12-07T03:55:51Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVENは検索強化されたマスク付き言語モデリングとプレフィックス言語モデリングを組み合わせたモデルである。
フュージョン・イン・コンテキスト・ラーニング(Fusion-in-Context Learning)により、追加のトレーニングを必要とせずに、より多くのコンテキスト内サンプルを利用できる。
本研究は,テキスト内学習のためのエンコーダ・デコーダ言語モデルの構築の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-08-15T17:59:18Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
AMPLIFY(Post Hoc Explanations)を用いたインコンテキスト学習の活用によるモデル性能向上のための新しいフレームワークを提案する。
我々は,各入力特徴がモデル予測に与える影響を抽出し,帰属スコア(説明)を出力するポストホック説明手法を活用する。
AMPLIFYは,幅広いタスクに対して約10~25%の精度向上を実現している。
論文 参考訳(メタデータ) (2023-05-19T04:46:04Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
本稿では,LNSR(Layerwise Noise Stability Regularization)という,新規かつ効果的な微調整フレームワークを提案する。
具体的には、標準ガウス雑音を注入し、微調整モデルの隠れ表現を正規化することを提案する。
提案手法は,L2-SP,Mixout,SMARTなど他の最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-12T04:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。