How Important are Data Augmentations to Close the Domain Gap for Object Detection in Orbit?
- URL: http://arxiv.org/abs/2410.15766v1
- Date: Mon, 21 Oct 2024 08:24:46 GMT
- Title: How Important are Data Augmentations to Close the Domain Gap for Object Detection in Orbit?
- Authors: Maximilian Ulmer, Leonard Klüpfel, Maximilian Durner, Rudolph Triebel,
- Abstract summary: We investigate the efficacy of data augmentations to close the domain gap in spaceborne computer vision.
We propose two novel data augmentations specifically developed to emulate the visual effects observed in orbital imagery.
- Score: 15.550663626482903
- License:
- Abstract: We investigate the efficacy of data augmentations to close the domain gap in spaceborne computer vision, crucial for autonomous operations like on-orbit servicing. As the use of computer vision in space increases, challenges such as hostile illumination and low signal-to-noise ratios significantly hinder performance. While learning-based algorithms show promising results, their adoption is limited by the need for extensive annotated training data and the domain gap that arises from differences between synthesized and real-world imagery. This study explores domain generalization in terms of data augmentations -- classical color and geometric transformations, corruptions, and noise -- to enhance model performance across the domain gap. To this end, we conduct an large scale experiment using a hyperparameter optimization pipeline that samples hundreds of different configurations and searches for the best set to bridge the domain gap. As a reference task, we use 2D object detection and evaluate on the SPEED+ dataset that contains real hardware-in-the-loop satellite images in its test set. Moreover, we evaluate four popular object detectors, including Mask R-CNN, Faster R-CNN, YOLO-v7, and the open set detector GroundingDINO, and highlight their trade-offs between performance, inference speed, and training time. Our results underscore the vital role of data augmentations in bridging the domain gap, improving model performance, robustness, and reliability for critical space applications. As a result, we propose two novel data augmentations specifically developed to emulate the visual effects observed in orbital imagery. We conclude by recommending the most effective augmentations for advancing computer vision in challenging orbital environments. Code for training detectors and hyperparameter search will be made publicly available.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Enabling High Data Throughput Reinforcement Learning on GPUs: A Domain Agnostic Framework for Data-Driven Scientific Research [90.91438597133211]
We introduce WarpSci, a framework designed to overcome crucial system bottlenecks in the application of reinforcement learning.
We eliminate the need for data transfer between the CPU and GPU, enabling the concurrent execution of thousands of simulations.
arXiv Detail & Related papers (2024-08-01T21:38:09Z) - Are NeRFs ready for autonomous driving? Towards closing the real-to-simulation gap [6.393953433174051]
We propose a novel perspective for addressing the real-to-simulated data gap.
We conduct the first large-scale investigation into the real-to-simulated data gap in an autonomous driving setting.
Our results show notable improvements in model robustness to simulated data, even improving real-world performance in some cases.
arXiv Detail & Related papers (2024-03-24T11:09:41Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving.
We introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector.
We conduct extensive experiments on the KITTI, runtime, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD.
arXiv Detail & Related papers (2024-03-10T10:36:32Z) - SPADES: A Realistic Spacecraft Pose Estimation Dataset using Event
Sensing [9.583223655096077]
Due to limited access to real target datasets, algorithms are often trained using synthetic data and applied in the real domain.
Event sensing has been explored in the past and shown to reduce the domain gap between simulations and real-world scenarios.
We introduce a novel dataset, SPADES, comprising real event data acquired in a controlled laboratory environment and simulated event data using the same camera intrinsics.
arXiv Detail & Related papers (2023-11-09T12:14:47Z) - Unseen Object Instance Segmentation with Fully Test-time RGB-D
Embeddings Adaptation [14.258456366985444]
Recently, a popular solution is leveraging RGB-D features of large-scale synthetic data and applying the model to unseen real-world scenarios.
We re-emphasize the adaptation process across Sim2Real domains in this paper.
We propose a framework to conduct the Fully Test-time RGB-D Embeddings Adaptation (FTEA) based on parameters of the BatchNorm layer.
arXiv Detail & Related papers (2022-04-21T02:35:20Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - Object-Based Augmentation Improves Quality of Remote SensingSemantic
Segmentation [0.0]
This study focuses on the development and testing of object-based augmentation.
We propose a novel pipeline for georeferenced image augmentation that enables a significant increase in the number of training samples.
The presented pipeline is called object-based augmentation (OBA) and exploits objects' segmentation masks to produce new realistic training scenes.
arXiv Detail & Related papers (2021-05-12T08:54:55Z) - DA4Event: towards bridging the Sim-to-Real Gap for Event Cameras using
Domain Adaptation [22.804074390795734]
Event cameras capture pixel-level intensity changes in the form of "events"
The novelty of these sensors results in the lack of a large amount of training data capable of unlocking their potential.
We propose a novel architecture, which better exploits the peculiarities of frame-based event representations.
arXiv Detail & Related papers (2021-03-23T18:09:20Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
Training deep neural networks (DNNs) on LiDAR data requires large-scale point-wise annotations.
Simulation-to-real domain adaptation (SRDA) trains a DNN using unlimited synthetic data with automatically generated labels.
ePointDA consists of three modules: self-supervised dropout noise rendering, statistics-invariant and spatially-adaptive feature alignment, and transferable segmentation learning.
arXiv Detail & Related papers (2020-09-07T23:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.