Object-Based Augmentation Improves Quality of Remote SensingSemantic
Segmentation
- URL: http://arxiv.org/abs/2105.05516v1
- Date: Wed, 12 May 2021 08:54:55 GMT
- Title: Object-Based Augmentation Improves Quality of Remote SensingSemantic
Segmentation
- Authors: Svetlana Illarionova, Sergey Nesteruk, Dmitrii Shadrin, Vladimir
Ignatiev, Mariia Pukalchik, Ivan Oseledets
- Abstract summary: This study focuses on the development and testing of object-based augmentation.
We propose a novel pipeline for georeferenced image augmentation that enables a significant increase in the number of training samples.
The presented pipeline is called object-based augmentation (OBA) and exploits objects' segmentation masks to produce new realistic training scenes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Today deep convolutional neural networks (CNNs) push the limits for most
computer vision problems, define trends, and set state-of-the-art results. In
remote sensing tasks such as object detection and semantic segmentation, CNNs
reach the SotA performance. However, for precise performance, CNNs require much
high-quality training data. Rare objects and the variability of environmental
conditions strongly affect prediction stability and accuracy. To overcome these
data restrictions, it is common to consider various approaches including data
augmentation techniques. This study focuses on the development and testing of
object-based augmentation. The practical usefulness of the developed
augmentation technique is shown in the remote sensing domain, being one of the
most demanded ineffective augmentation techniques. We propose a novel pipeline
for georeferenced image augmentation that enables a significant increase in the
number of training samples. The presented pipeline is called object-based
augmentation (OBA) and exploits objects' segmentation masks to produce new
realistic training scenes using target objects and various label-free
backgrounds. We test the approach on the buildings segmentation dataset with
six different CNN architectures and show that the proposed method benefits for
all the tested models. We also show that further augmentation strategy
optimization can improve the results. The proposed method leads to the
meaningful improvement of U-Net model predictions from 0.78 to 0.83 F1-score.
Related papers
- How Important are Data Augmentations to Close the Domain Gap for Object Detection in Orbit? [15.550663626482903]
We investigate the efficacy of data augmentations to close the domain gap in spaceborne computer vision.
We propose two novel data augmentations specifically developed to emulate the visual effects observed in orbital imagery.
arXiv Detail & Related papers (2024-10-21T08:24:46Z) - Adaptive Masking Enhances Visual Grounding [12.793586888511978]
We propose IMAGE, Interpretative MAsking with Gaussian radiation modEling, to enhance vocabulary grounding in low-shot learning scenarios.
We evaluate the efficacy of our approach on benchmark datasets, including COCO and ODinW, demonstrating its superior performance in zero-shot and few-shot tasks.
arXiv Detail & Related papers (2024-10-04T05:48:02Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - SeiT++: Masked Token Modeling Improves Storage-efficient Training [36.95646819348317]
Recent advancements in Deep Neural Network (DNN) models have significantly improved performance across computer vision tasks.
achieving highly generalizable and high-performing vision models requires expansive datasets, resulting in significant storage requirements.
Recent breakthrough by SeiT proposed the use of Vector-Quantized (VQ) feature vectors (i.e., tokens) as network inputs for vision classification.
In this paper, we extend SeiT by integrating Masked Token Modeling (MTM) for self-supervised pre-training.
arXiv Detail & Related papers (2023-12-15T04:11:34Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Fusion of CNNs and statistical indicators to improve image
classification [65.51757376525798]
Convolutional Networks have dominated the field of computer vision for the last ten years.
Main strategy to prolong this trend relies on further upscaling networks in size.
We hypothesise that adding heterogeneous sources of information may be more cost-effective to a CNN than building a bigger network.
arXiv Detail & Related papers (2020-12-20T23:24:31Z) - Improving the Performance of Fine-Grain Image Classifiers via Generative
Data Augmentation [0.5161531917413706]
We develop Data Augmentation from Proficient Pre-Training of Robust Generative Adrial Networks (DAPPER GAN)
DAPPER GAN is an ML analytics support tool that automatically generates novel views of training images.
We experimentally evaluate this technique on the Stanford Cars dataset, demonstrating improved vehicle make and model classification accuracy.
arXiv Detail & Related papers (2020-08-12T15:29:11Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.