論文の概要: WildOcc: A Benchmark for Off-Road 3D Semantic Occupancy Prediction
- arxiv url: http://arxiv.org/abs/2410.15792v1
- Date: Mon, 21 Oct 2024 09:02:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:19:36.002561
- Title: WildOcc: A Benchmark for Off-Road 3D Semantic Occupancy Prediction
- Title(参考訳): WildOcc: オフロード3Dセマンティックアクシデント予測のためのベンチマーク
- Authors: Heng Zhai, Jilin Mei, Chen Min, Liang Chen, Fangzhou Zhao, Yu Hu,
- Abstract要約: オフロード環境は幾何学的情報に富んでいるため、3Dセマンティック占有予測タスクに適している。
オフロード3Dセマンティック占有予測タスクに密接な占有アノテーションを提供する最初のベンチマークであるWildOccを紹介する。
本稿では, より現実的な結果を得るために, 粗大な再構成を用いた基礎的真理生成パイプラインを提案する。
- 参考スコア(独自算出の注目度): 9.639795825672023
- License:
- Abstract: 3D semantic occupancy prediction is an essential part of autonomous driving, focusing on capturing the geometric details of scenes. Off-road environments are rich in geometric information, therefore it is suitable for 3D semantic occupancy prediction tasks to reconstruct such scenes. However, most of researches concentrate on on-road environments, and few methods are designed for off-road 3D semantic occupancy prediction due to the lack of relevant datasets and benchmarks. In response to this gap, we introduce WildOcc, to our knowledge, the first benchmark to provide dense occupancy annotations for off-road 3D semantic occupancy prediction tasks. A ground truth generation pipeline is proposed in this paper, which employs a coarse-to-fine reconstruction to achieve a more realistic result. Moreover, we introduce a multi-modal 3D semantic occupancy prediction framework, which fuses spatio-temporal information from multi-frame images and point clouds at voxel level. In addition, a cross-modality distillation function is introduced, which transfers geometric knowledge from point clouds to image features.
- Abstract(参考訳): 3Dセマンティック占有予測は、シーンの幾何学的詳細を捉えることに集中して、自律運転において不可欠な部分である。
オフロード環境は幾何学的情報に富んでいるため、このようなシーンを再構築するための3次元意味的占有予測タスクに適している。
しかし、ほとんどの研究はオンロード環境に焦点を当てており、関連するデータセットやベンチマークが欠如しているため、オフロード3Dセマンティック占有率予測のために設計された手法はほとんどない。
このギャップに対応するために、我々はWildOccを紹介し、オフロード3Dセマンティック占有予測タスクに密接な占有アノテーションを提供する最初のベンチマークである。
本稿では, より現実的な結果を得るために, 粗大な再構成を用いた基礎的真理生成パイプラインを提案する。
さらに,マルチフレーム画像と点雲からの時空間情報をボクセルレベルで融合したマルチモーダルな3Dセマンティック占有予測フレームワークを提案する。
さらに、点雲から画像特徴へ幾何学的知識を伝達するクロスモダリティ蒸留関数が導入された。
関連論文リスト
- AdaOcc: Adaptive-Resolution Occupancy Prediction [20.0994984349065]
AdaOccは適応分解能でマルチモーダルな予測手法である。
提案手法は,オブジェクト中心の3次元再構成と全体的占有予測を一つのフレームワークに統合する。
近距離シナリオでは、以前のベースラインを13%以上、ハウスドルフ距離を40%以上上回る。
論文 参考訳(メタデータ) (2024-08-24T03:46:25Z) - Real-time 3D semantic occupancy prediction for autonomous vehicles using memory-efficient sparse convolution [4.204990010424084]
自動運転車では、エゴ車の周囲の3D環境をリアルタイムで理解することが不可欠である。
State of the art 3D mapping method leverageer with cross-attention mechanism to elevate 2D vision-centric camera features into the 3D domain。
本稿では、正面2Dカメラ画像とLiDARスキャンから特徴を抽出し、3Dセマンティック占有予測にスパース畳み込みネットワーク(Minkowski Engine)を用いる手法を提案する。
論文 参考訳(メタデータ) (2024-03-13T17:50:59Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
マルチビュー画像を用いた3次元シーンの占有状況とセマンティクスを推定することを目的とした,新たな課題である3D占有予測手法を提案する。
本稿では,RandOccを提案する。Rendering Assisted distillation paradigm for 3D Occupancy prediction。
論文 参考訳(メタデータ) (2023-12-19T03:39:56Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
本稿では,OccNeRF法を用いて,3次元監視なしで占有ネットワークを訓練する手法を提案する。
我々は、再構成された占有領域をパラメータ化し、サンプリング戦略を再編成し、カメラの無限知覚範囲に合わせる。
意味的占有予測のために,事前学習した開語彙2Dセグメンテーションモデルの出力をフィルタリングし,プロンプトを洗練するためのいくつかの戦略を設計する。
論文 参考訳(メタデータ) (2023-12-14T18:58:52Z) - Scene as Occupancy [66.43673774733307]
OccNetは、カスケードと時間ボクセルデコーダを備えたビジョン中心のパイプラインで、3D占有を再構築する。
nuScenes上に構築された最初の高密度3D占有率ベンチマークであるOpenOccを提案する。
論文 参考訳(メタデータ) (2023-06-05T13:01:38Z) - Incremental 3D Semantic Scene Graph Prediction from RGB Sequences [86.77318031029404]
RGB画像列が与えられたシーンの一貫性のある3Dセマンティックシーングラフをインクリメンタルに構築するリアルタイムフレームワークを提案する。
提案手法は,新たなインクリメンタルエンティティ推定パイプラインとシーングラフ予測ネットワークから構成される。
提案するネットワークは,シーンエンティティから抽出した多視点および幾何学的特徴を用いて,反復的メッセージパッシングを用いた3次元セマンティックシーングラフを推定する。
論文 参考訳(メタデータ) (2023-05-04T11:32:16Z) - Occ3D: A Large-Scale 3D Occupancy Prediction Benchmark for Autonomous
Driving [34.368848580725576]
我々は,任意のシーンに対して,濃密で可視性に配慮したラベルを生成するラベル生成パイプラインを開発した。
このパイプラインは、ボクセルの密度化、推論、画像誘導ボクセル精製の3段階からなる。
我々は、Occ3Dベンチマークにおいて優れた性能を示すCTF-Occネットワークと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2023-04-27T17:40:08Z) - A Simple Framework for 3D Occupancy Estimation in Autonomous Driving [16.605853706182696]
本稿では,CNNをベースとした3次元占有率推定のための重要な要素をいくつか明らかにするフレームワークを提案する。
また,3次元占有率推定と,単眼深度推定や3次元再構成などの関連課題との関係についても検討した。
論文 参考訳(メタデータ) (2023-03-17T15:57:14Z) - SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving [98.74706005223685]
3Dシーン理解は、視覚に基づく自動運転において重要な役割を果たす。
マルチカメラ画像を用いたSurroundOcc法を提案する。
論文 参考訳(メタデータ) (2023-03-16T17:59:08Z) - 3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure
Prior [50.73148041205675]
セマンティック・シーン・コンプリート(SSC)タスクの目標は、単一視点で観察することで、ボリューム占有率とシーン内のオブジェクトの意味ラベルの完全な3Dボクセル表現を同時に予測することである。
低解像度のボクセル表現で深度情報を埋め込む新しい幾何学的手法を提案する。
提案手法は,SSCフレームワークからの深度特徴学習よりも有効である。
論文 参考訳(メタデータ) (2020-03-31T09:33:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。