WildOcc: A Benchmark for Off-Road 3D Semantic Occupancy Prediction
- URL: http://arxiv.org/abs/2410.15792v2
- Date: Sun, 27 Oct 2024 09:11:07 GMT
- Title: WildOcc: A Benchmark for Off-Road 3D Semantic Occupancy Prediction
- Authors: Heng Zhai, Jilin Mei, Chen Min, Liang Chen, Fangzhou Zhao, Yu Hu,
- Abstract summary: Off-road environments are rich in geometric information, therefore it is suitable for 3D semantic occupancy prediction tasks.
We introduce WildOcc, the first benchmark to provide dense occupancy annotations for off-road 3D semantic occupancy prediction tasks.
A ground truth generation pipeline is proposed in this paper, which employs a coarse-to-fine reconstruction to achieve a more realistic result.
- Score: 9.639795825672023
- License:
- Abstract: 3D semantic occupancy prediction is an essential part of autonomous driving, focusing on capturing the geometric details of scenes. Off-road environments are rich in geometric information, therefore it is suitable for 3D semantic occupancy prediction tasks to reconstruct such scenes. However, most of researches concentrate on on-road environments, and few methods are designed for off-road 3D semantic occupancy prediction due to the lack of relevant datasets and benchmarks. In response to this gap, we introduce WildOcc, to our knowledge, the first benchmark to provide dense occupancy annotations for off-road 3D semantic occupancy prediction tasks. A ground truth generation pipeline is proposed in this paper, which employs a coarse-to-fine reconstruction to achieve a more realistic result. Moreover, we introduce a multi-modal 3D semantic occupancy prediction framework, which fuses spatio-temporal information from multi-frame images and point clouds at voxel level. In addition, a cross-modality distillation function is introduced, which transfers geometric knowledge from point clouds to image features.
Related papers
- AdaOcc: Adaptive-Resolution Occupancy Prediction [20.0994984349065]
We introduce AdaOcc, a novel adaptive-resolution, multi-modal prediction approach.
Our method integrates object-centric 3D reconstruction and holistic occupancy prediction within a single framework.
In close-range scenarios, we surpass previous baselines by over 13% in IOU, and over 40% in Hausdorff distance.
arXiv Detail & Related papers (2024-08-24T03:46:25Z) - Real-time 3D semantic occupancy prediction for autonomous vehicles using memory-efficient sparse convolution [4.204990010424084]
In autonomous vehicles, understanding the surrounding 3D environment of the ego vehicle in real-time is essential.
State of the art 3D mapping methods leverage transformers with cross-attention mechanisms to elevate 2D vision-centric camera features into the 3D domain.
This paper introduces an approach that extracts features from front-view 2D camera images and LiDAR scans, then employs a sparse convolution network (Minkowski Engine) for 3D semantic occupancy prediction.
arXiv Detail & Related papers (2024-03-13T17:50:59Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
3D occupancy prediction is an emerging task that aims to estimate the occupancy states and semantics of 3D scenes using multi-view images.
We propose RadOcc, a Rendering assisted distillation paradigm for 3D Occupancy prediction.
arXiv Detail & Related papers (2023-12-19T03:39:56Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - Scene as Occupancy [66.43673774733307]
OccNet is a vision-centric pipeline with a cascade and temporal voxel decoder to reconstruct 3D occupancy.
We propose OpenOcc, the first dense high-quality 3D occupancy benchmark built on top of nuScenes.
arXiv Detail & Related papers (2023-06-05T13:01:38Z) - Incremental 3D Semantic Scene Graph Prediction from RGB Sequences [86.77318031029404]
We propose a real-time framework that incrementally builds a consistent 3D semantic scene graph of a scene given an RGB image sequence.
Our method consists of a novel incremental entity estimation pipeline and a scene graph prediction network.
The proposed network estimates 3D semantic scene graphs with iterative message passing using multi-view and geometric features extracted from the scene entities.
arXiv Detail & Related papers (2023-05-04T11:32:16Z) - Occ3D: A Large-Scale 3D Occupancy Prediction Benchmark for Autonomous
Driving [34.368848580725576]
We develop a label generation pipeline that produces dense, visibility-aware labels for any given scene.
This pipeline comprises three stages: voxel densification, reasoning, and image-guided voxel refinement.
We propose a new model, dubbed Coarse-to-Fine Occupancy (CTF-Occ) network, which demonstrates superior performance on the Occ3D benchmarks.
arXiv Detail & Related papers (2023-04-27T17:40:08Z) - A Simple Framework for 3D Occupancy Estimation in Autonomous Driving [16.605853706182696]
We present a CNN-based framework designed to reveal several key factors for 3D occupancy estimation.
We also explore the relationship between 3D occupancy estimation and other related tasks, such as monocular depth estimation and 3D reconstruction.
arXiv Detail & Related papers (2023-03-17T15:57:14Z) - SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving [98.74706005223685]
3D scene understanding plays a vital role in vision-based autonomous driving.
We propose a SurroundOcc method to predict the 3D occupancy with multi-camera images.
arXiv Detail & Related papers (2023-03-16T17:59:08Z) - 3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure
Prior [50.73148041205675]
The goal of the Semantic Scene Completion (SSC) task is to simultaneously predict a completed 3D voxel representation of volumetric occupancy and semantic labels of objects in the scene from a single-view observation.
We propose to devise a new geometry-based strategy to embed depth information with low-resolution voxel representation.
Our proposed geometric embedding works better than the depth feature learning from habitual SSC frameworks.
arXiv Detail & Related papers (2020-03-31T09:33:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.